

International Research Journal in Advanced
Engineering and Technology (IRJAET)

ISSN (Print) : 2454-4744 | ISSN (Online) : 2454-4752 (www.irjaet.com)
Vol. 1, Issue 2, pp.36-42, July, 2015

RESEARCH ARTICLE

DESIGN AND IMPLEMENTATION OF FPGA BASED WAVE-PIPELINING FOR

DIGITAL SIGNAL PROCESSING CIRCUITS

D. Sobya

Department of Electronics and Communication Engineering, Research scholar: Sathyabama University

e-mail: sobyadevaraj@gmail.com

ARTICLE INFO

Article History:

Received 19th,June, 2015

 Received in revised form 28th, June, 2015

Accepted 1st July, 2015

Published online 3rd July, 2015

Key words:

FPGA

Wave-Pipelining

Multiplier

Shift Register, DSP Block

ABSTRACT

This paper reveals that the techniques for efficient implementation of Field-

Programmable Gate-Array (FPGA)-based Wave-Pipelined (WP) multipliers,

accumulators, and filters is presented. A comparison of the performance of WP and

pipelined systems has been made. Major contributions of this paper are development

of an on-chip clock generation scheme which permits finer tuning of the frequency, a

synthesis technique that reduces the area and latency by 25%, a placement utility that

results in 10%–40% increase in speed and proposal of an interleaving scheme for

filters that reduces the number of multipliers required by 50%. WP multipliers of size

2 6 and the filters using them are found to be 11% faster and require lower power than

those using pipelined multipliers. Filters with higher order WP multipliers also operate

with lower power at the cost of speed. The delay-register products of such filters are

found to be about 60% lower than those using the pipelined multipliers. The project

also outlines applications of these techniques for the Spartan II FPGAs and a self-

tuning scheme for optimizing the speed.

I. INTRODUCTION

Field Programmable Gate Array based system design is

gaining extensive popularity due to the flexibility and

complexity it provides. FPGAs with complexities, as high as 10

million gates in a single Integrated Circuit (IC) have become a

reality. This has enabled the FPGA vendors to embed the

Restricted Instruction Set Computer (RISC) processor in part of

the core so that in a single IC the advantages of both

microprocessors and FPGAs can be combined, leading to the

design of a complete System on a Single Chip (SOC). In view of

this, the study of FPGA-based implementation of various

systems that have traditionally been implemented either using

Application-Specific Integrated Circuits (ASICs) or

programmable digital signal processors become important.

Design and FPGA-based implementation of digital signal

processing blocks using both pipelining and wave-pipelining

techniques are considered in this project. They are required to

operate the WP circuits at high speeds. Here in one section

describes a PC-based testing scheme. This is used for testing all

the WP circuits, in this article. The case studies were carried out

mailto:sobyadevaraj@gmail.com

P a g e | 37

on convolvers and multipliers to bring out the better amenability

of array multipliers for wave pipelining.

II. LITERATURE REVIEW

Wave-pipelining is projected as one of the method for

achieving high speed without the cost of increased area and

circuit complexity. The basic criterion used for partitioning the

execution path is hard to achieve in practice because of the

differing amounts of logic per stage and variations in time

delays per logic element [1&2]. A new critical path approach to

speeding up wave pipelining technique for Distributed

Arithmetic Algorithm (DAA) based Finite Impulse Response

(FIR) filter using a control circuit has been presented by

Charanjit Singh [3]. Terrence Mak et al [4] proposing a novel

wave pipelined signaling scheme to achieve substantial

throughput improvement in FPGAs. A new analytical model

capturing the electrical characteristics in FPGA interconnect is

presented. For Xilinx FPGAs, the physical design editor referred

to as FPGA editor may be used for measuring and altering the

delays. Using this feature, the implementation of wave-pipelined

circuits on Xilinx FPGAs is considered in [5]. The availability of

on-chip dedicated multipliers, soft core/hard core processors and

IP cores make the FPGAs to be an ideal platform for the

implementation of area as well as speed intensive image

processing applications such as Discrete Cosine Transform

(DCT) and DWT [6].

The micro architecture of the 32 bit sparse tree adder [7] has

two main features: asynchronous hybrid wave-pipelined

processing and a prefix sparse-tree carry generate-propagate

structure for arithmetic. V.KrishnaKumari proposed method

[8] modification is done by replacing the parameter 4-bit carry

skip adder with 4- bit carry look ahead adder, 4-bit Kogge-Stone

adders. The BIST approach requires a number of overheads such

as Finite-State Machine (FSM), signature generator and test

vector RAM [9&10]. Instead of using a dedicated circuit such as

Built-In Self-Test (BIST), a processor may be used to carry out

the tuning and retuning tasks [11]. Despite of the irregularity and

idiosyncratic nature of FPGA long interconnections, buffers

were embedded at switches to speed up the signal propagation

[12]. Recently the focus of wave-pipelining had shifted from the

logic to the interconnection circuits and a number of

interconnect wave-pipelining design for ASIC has been

proposed [13-16] in order to achieve a higher throughput of

interconnections.

III. METHODOLOGY

The idea of wave-pipelining or maximal rate pipelining was

first formalized in shift register. Recently, this concept has been

a subject of renewed interest as technology and design

techniques have enabled the effective implementation of wave-

pipelining in integrated circuits. The concept of wave-pipelining

has been described in a number of previous works. To illustrate

this concept, graphical representation of the data flow through

combinational logic is used. Fig. 1(a) and (b) shows the

conventional single-stage system and its associated timing

diagram. The combinational logic is surrounded by edge-

triggered input and output registers. At the beginning of each

clock cycle, data is initiated into the logic block at the input

register. Due to the differences in the circuit path lengths and

other factors, data delay through the combinational logic will

vary. In Fig. 1(b), the shaded regions bounded by the maximum

and minimum delays through the logic Dmax and Dmin depict

the flow of data through the combinational logic and the

variations in the logic block with time. The non shaded areas

depict the stable duration of the logic. In the conventional

system, the output register is clocked in the non shaded region,

and the minimum clock period is chosen to be greater than

Dmax. In the WP system, the clock period is chosen to be

(Dmax-Dmin) +clocking overheads such as setup time, hold

time, etc. To ensure correct operation, the clock to the output

register should be delayed so that the active clock edge occurs in

the stable period. Moreover maximize the frequency of

operation of the WP system, the difference (Dmax-Dmin) is

minimized by equalizing the path delays. As the shaded region

increases with an increase in the logic depth, the operating clock

frequency should be reduced to ensure correct operation. An

alternative technique to avoid decreasing the clock frequency is

pipelining. However, the need for additional registers increases

the area, power, latency, and clock routing complexity. On the

other hand, variation of and due to various factors such as

difference in rise and fall times, variations due to process,

environment, and voltage changes make the delay equalization a

challenging task in WP systems. Several methods need to be

adopted to achieve the equalization of path delays. Algorithms

to automatically equalize the delays in combinational logic

circuit are reported. In a WP multiplier is implemented on

Normal Process Complementary Pass Transistor Logic

(NPCPL), and an algorithm is adopted to bring the shortest path

delay equal to the longest path delay. ASIC based WP systems

have been successfully implemented for a variety of

applications.

Fig. 1(a) Date Flow through Combinational Logic Circuit

P a g e | 38

Fig. 1(b) Temporal/Spatial Diagram of Combinational Logic Circuit

In the feasibility of wave-pipelining using lookup table

(LUT)-based FPGAs is studied through the implementation of

the Guild multiplier Using a two phase clocking scheme, the WP

circuit is found to be operating ten times faster than the speed

predicted by the timing analyzer tool (i.e., based on alone).

External clocks are used for the input and output registers,

surrounding the multiplier. The skew for the clock to the output

register is manually adjusted to lie in the stable period, by

observing the output of the multiplier in Cathode Ray

Oscilloscope (CRO). The use of external clocks in limits the WP

circuit to be operated at a lower frequency than what would be

possible if the clock had been generated within the FPGA. The

frequency of the externally fed clock signal is restricted by the

printed circuit board in which the FPGA is mounted and the

input–output (I/O) pad delays.

A. WP Clock

In medium- and high-density FPGAs, the interconnect

delays become comparable to those of the active device blocks

in Configurable Logic Blocks (CLB) such as Look Up Tables

(LUT) and flip-flops. For example, for the XC4003E-1 device,

the LUT delay is typically 1.3 ns, and the interconnect delay

between LUTs can be varied over a range of 0.7–7 ns. A clock

signal can be generated by interconnecting the output of a

number of LUTs in cascade to the input of the first LUT in the

chain. The highest frequency is obtained when a single LUT is

used as shown in Fig. 2. Low values of interconnect delays such

as 0.7 ns cannot be achieved if a particular LUT has high fan-

out. High fan-out is desirable since the clock may have to be

applied to a number of blocks. On implementation of the clock

in an FPGA, it is observed that an interconnect delay of 1.4 ns

can be achieved with the least number of interconnect resources

and reasonably large fan outs. With this delay, a clock period of

5.4 ns is obtained. The clock generated has a frequency very

much above what can be fed through the I/O pads using the

demo board. An alternative scheme for generation of high

frequency clock is through multiplication of an external clock

using Delay Locked Loops (DLLs). This feature is not available

in XC4000 and Spartan family of FPGAs, whereas Spartan II

and Virtex FPGAs contain DLLs. In these devices, however, the

maximum multiplication factor can be only 16. However, the

clock generation scheme described above has the advantage of

changing the clock periods in smaller steps. Moreover, the clock

frequency can also be altered through programming by

controlling the number of LUTs in the forward path of the clock

generator. To study the drift in the clock frequency, the clock

signal is divided by a large number and observed in the CRO.

The clock waveform was found to be stable. Moreover, the

Static Timing analysis (STA) input of the clock generator

enables the clock signal to be reset periodically to minimize the

drift, if any.

Fig. 2. Clock Circuit

B. Implementation of the WP Counters

The basic clock signal may be used as the least significant

address input for the RAM in the WP system. Counters may be

used to generate the higher order addresses for the RAM. In

XC4003E-1 device, the minimum write cycle time for the flip-

flop in the CLBs is 6 ns. Hence, for clock signals of period 6 ns

or more, the counter can be implemented using the flip-flops in

the CLBs. For clock periods less than 6 ns, the counter may be

realized using the LUTs in the CLBs. Lookup table with

feedback between output and input functions as a latch. Using

these latches, a novel WP counter is proposed in this paper. A 2-

bit WP counter is shown in Fig. 3. In this counter, the

interconnect delay between the output of the first LUT and the

input to the second LUT is made equal to the interconnect delay

at the feedback paths of both of the LUTs. The AND and XOR

functions, indicated in Fig. 3, are implemented using a single

LUT and the STA input is used for starting the counter. The

above technique can be extended for the design of higher order

WP counters.

Fig. 3 WP Counter

P a g e | 39

C. WP Shift Registers

The circuit diagram of a 4- bit WP shift register is shown in

Fig. 4. The multiplexers in Fig. 4 operate in two modes. When

shift enable is 1, the data output from each multiplexer is shifted

into the multiplexer on the right. When shift enable is zero, the

data output of each of the multiplexers at the 1–0 transition is

latched onto the same multiplexer. If the interconnect delay

between the multiplexers is adjusted to be 1.4 ns and if the LUT

delay is assumed to be 1.3 ns, then the WP shift register is

equivalent to a conventional shift register with shift clock period

of 2.7 ns.

SE – Shift Enable

Fig. 4. 4-Bit WP Shift Register

IV. PC-BASED TESTING SCHEME FOR WP CIRCUITS

The operation of simple circuits such as a clock can be

verified using CRO after suitable frequency division. For testing

more complex circuits, a PC based testing scheme is developed

using the General Purpose I/O (GPIO) PC add-on card. The

GPIO card is assumed to be used for writing the test data into

the input RAM and reading the output from the output register.

In order to ensure that the speed of the I/O card does not restrict

the maximum operating frequency of the WP circuit, it is

required to carry out the read/write (r/w) operation by the add-on

card at a rate different from the rate at which the WP circuit

processes the data. This is achieved by connecting the address

and data bus of the input RAM as shown in Fig. 5. The address

multiplexer is implemented in the same FPGA in which the WP

circuit is implemented. The start and r/w signals are controlled

by the PC add-on card. After the design is downloaded into the

FPGA, a testing routine executed from the PC applies the test

inputs, collects the results, compares them with the expected

results, and reports the discrepancies if any.

Fig. 5 PC- Based Testing Skill for WP Circuits

V. DESIGN AND IMPLEMENTATION OF FPGA-BASED

WP DSP CIRCUITS

AWP circuit may be implemented using the layout editor by

manually choosing the LUTs required, specifying the function to

be performed by each LUT, the inputs and outputs to be

interconnected, and the composition of the interconnect for each

interconnect. Alternatively, to specify the design, the Hardware

Description Language (HDL) entry may be used and the exact

location of the CLBs to be used for realizing the different child

modules in the HDL program may be specified through the user

constraints file. Moreover, after the placement and routing step

by the Computer-Aided Design (CAD) tool, the delays have to

be examined using the layout editor and altered, if required, to

equalize the delays. Using the second approach and the design

techniques given in Section IV, WP multipliers multiply

accumulators, and serial/parallel convolvers are designed and

implemented. Some details of the design and implementation

results are presented in this section.

A. WP Serial / Parallel Convolver

As a case study for investigating the feasibility of operating

the WP circuits faster than the pipelined circuits, a one-

dimensional (1-D) WP 8-tap convolver using 8-bit serial/parallel

WP multipliers is implemented on Xilinx XC4006E. In the

serial/parallel convolver, the product bits arrive serially, and

accumulators are implemented using WP shift registers. The

categorical matching proposed in [21] is used to equalize the

path delays. To adjust the clock skew of the output

RAM/register, for a known sequence of test inputs, the

P a g e | 40

simulated output of the convolver is read and compared with the

expected result. The clock skew is adjusted until the correct

results are obtained. The results obtained through simulation are

compared for convolvers with and without wave-pipelining. The

WP convolver is found to be faster by a factor of two compared

with the convolver using pipelining. This is because, for the

pipelined circuit, the minimum clock period is 6 nos due to the

limit posed by the flip-flops. The WP convolver requires 73%

more CLBs. To confirm whether the simulation results match

with the actual results obtained from the device, the design is

downloaded to the FPGA and tested using the PC based testing

scheme described here. From the test results, it is found that the

convolver does not work correctly. This has indicated the

inadequacy of the simulation for testing the WP circuits. This

may be caused by the significant difference between the routing

delays reported by the layout editor and the actual delays.

Fig. 6. WP 2x2 Serial Parallel Multiplier

VI. OPTIMIZATION SCHEMES FOR FPGA BASED

PIPELINED AND WP MULTIPLIERS

A. Optimally Synthesized Pipelined Array Multiplier

The objective of the synthesis technique proposed in this

section is to ensure that all of the four inputs of the LUTs in

FPGAs are effectively engaged. Optimization on the use of four

input LUTs is considered, as FPGAs from popular FPGA design

houses such as Xilinx and Altera contain four input LUTs. Let

us consider the optimization of a 4x4 array multiplier given in

Figure 7 and the stages involving half-adders utilize the LUTs

inefficiently. These stages may be modified to engage all of the

four inputs of the LUT, as follows: Stage1 may be modified to

compute the partial products due to the two least significant

multiplier bits. The last stages may be reduced to stages by

replacing the half-adders with suitable functional blocks and

feeding the sum and carry outputs from one stage to another

properly. The resulting pipelined array multiplier is referred to

as Optimally Synthesized Pipelined Array Multiplier (OSPAM)

and is shown in fig. It consists of five stages of combinational

logic blocks. These stages use the functional blocks M0, M2,

M5, M6, M7, M8, M9, and M10. The inputs and outputs of each

of these blocks are given in Fig. Using these, logic equations for

the various blocks can be written. The latency of the multiplier

is reduced from eight clock cycles to five clock cycles. In

general, multiplication can be achieved using registers with the

latency of clock cycles. This scheme results in 25% lower

latency and requires 25% lower area for implementation. This

scheme is applicable for both pipelined and WP array

multipliers.

B. Observations and Results

The pipelined array multiplier implemented using the

optimization schemes proposed in Sections VII-A and VII-F is

denoted as OPARAM. The conventional pipelined array

multiplier, the Guild multiplier, OSPAM, and OPARAM are

implemented on the XC4010E-1 device. The different

characteristics of 4x4 multipliers such as number of CLBs

required fmax maximum operating frequency and latency in

nanoseconds are evaluated for all the above multipliers and are

tabulated in Table .The WPARAM of different sizes are

implemented and tested using both simulator- and PC-based

testing schemes. WPARAM of size 4x 4 and 2x 6 are found to

be satisfactory at a clock rate of 185 MHz. However, WPARAM

of size 4 6 and 6x 6 are found to be satisfactory only at a lower

frequency. From these results, it may be noted that for a given

operating frequency, the maximum size of a multiplier that can

be designed using the wave-pipelining technique is limited.

However, OPARAM of larger sizes can be directly implemented

and operated with the clock period of 6 ns. WPARAM of larger

sizes have to be operated with a lower clock frequency. For

higher order multipliers, OPARAM is to be preferred, if higher

speeds are required and any clock frequency lower than 166

MHz can be used. If power dissipation is the primary concern,

one may go for WPARAM instead of OPARAM. The

effectiveness of the structure organizer utility is studied by

implementing different types of 8x8 multipliers on a Spartan

XCS30-3VQ100 device (a Xilinx Spartan family device with

speed grade 3), and the results are given in Table. From Table, it

may be noted that the structure organizer improves the speed of

the multipliers by a factor of 1.1 to 1.4 times compared with that

achieved by using commercially available P&R tools. For larger

size multipliers and in designs engaging a majority of CLBs in

an FPGA, the routing complexity is bound to decrease the speed

of the multipliers further when they are designed with

commercially available P&R tools. However, the structure

organizer makes the design operate at maximum rate,

irrespective of the routing complexity.

P a g e | 41

Fig. 7. Optimally Synthesized Pipelined 4x4 Array Multiplier

TABLE I. IMPLEMENTATION RESULTS OF PIPELINED

AND WAVE-PIPELINED ARRAY MULTIPLIERS

Name of the

Multiplier

Area in

CLBs

Fmax

(MHz)

Latency

(ns)

Pipelined Array

Multiplier– 4x4
48 128 70.3

Guild Multiplier- 4x4 44 117 68.4

OSPAM- 4X4 32 131 45.8

OPARAM- 4X4 32 166 36.0

WPARAM- 2X4 15 370 10.8

WPARAM- 2X6 30 185 27.0

WPARAM- 4X4 32 185 32.4

VII. CONCLUSION

The FPGA based WP multipliers have established that they

are superior to the pipelined multipliers in both speed and power

for small operand sizes. Higher order multipliers also dissipate

lesser power but operate at lower speeds. The synthesis

technique proposed for both WP and pipelined array multipliers

reduces the area and latency by 25%. Optimization schemes,

proposed in this article is to enable the increase in the speed of

the conventional pipelined multipliers by 10% to 40% and have

led to a reduction in the area by 40% and increase in speed by

58% for the filters using the interleaving. Application of these

techniques for WP systems has enabled partial automation of the

design technique and the filters using WP multipliers result in

60% reduction in the delay–register product compared with

those using in pipelined multipliers.

REFERENCES

[1] Hirak Kumar Maity, M B Sarkar and A. Chakrobarty,

“Wave Pipelining: An Analysis for High Performance

Digital Circuits”, International Journal of Electronic

Engineering Research, Vol. 1(3), (2009). pp. 269-278

[2] Suryanarayana B. Tatapudi and José G. Delgado-Frias, “A

High Performance Hybrid Wave-Pipelined Multiplier”,

VLSI, Proceedings. IEEE Computer Society Annual

Symposium, (2005), pp. 282- 283

P a g e | 42

[3] Charanjit Singh, Balwinder Singh, “Design of High

Performance Modified Wave pipelined DAA Filter with

Critical Path Approach”, International Journal of Electrical

and Electronics Engg., Vol. I (2), (2011), pp. 28-32

[4] Terrence Mak et al, “Wave-pipelined intra-chip signaling

for on-FPGA communications”, INTEGRATION, the VLSI

Journal, Vol. 43, (2010), pp. 188-201

[5] Lakshminarayanan and B. Venkataramani, “Optimization

techniques for FPGA-based wave-pipelined DSP blocks,”

IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 13(7), (2005), pp. 783-793

[6] A. Draper, J. R. Beveridge, A. P. W. Bohm, C. Ross, and

M. Chawathe, “Accelerated image processing on FPGAs,”

IEEE Transactions on Image Processing, Vol. 12, No. 12,

(2003), pp. 1543-1551

[7] P.Chaitanyakumari and R.Nagendra, “Design of 32 bit

Parallel Prefix Adders”, IOSR Journal of Electronics and

Communication Engineering Volume 6, Issue 1 (2013), PP.

01-06

[8] V.KrishnaKumari and Y.SriChakrapani, “Designing and

Characterization of koggestone, Sparse Kogge stone,

Spanning tree and Brentkung Adders”, Int. Journal of

Modern Engg. Research, Vol. 3 (4), (2013) pp. 2266-2270

[9] Seetharaman, B. Venkataramani, and G. Lakshminarayanan,

“Design and FPGA implementation of self tuned wave-

pipelined filters”, IETE Journal of Research, Vol. 52(4),

(2006), pp. 281-286

[10] Nyathi and J. G. Delgado-Frias, “A hybrid wave pipelined

network router,” IEEE Trans. Circuits Syst. I: Fundam.

Theory Appl., Vol. 49, No. 12, (2002), pp. 1764-1772

[11] G. Seetharaman and B. Venkataramani, “SOC

implementation of wave-pipelined circuits,” in Proceedings

of IEEE International Conference on Field-Programmable

Technology in Japan, (2007), pp. 9-16

[12] T. Mak, C. D’Alessandro, P. Sedcole, P. Cheung, A.

Yakovlev, W. Luk, “Global interconnections in FPGAs:

modeling and performance analysis”, in: Proceedings of

ACM Int. Workshop on System Level Interconnect

Prediction, (2008), pp. 51-58

[13] Joshi, G. Lopez, J. Davis, “Design and optimization of on-

chip interconnects using wave-pipelined multiplexed

routing”, IEEE Trans. VLSI Systems Vol. 15 (9), (2007),

pp. 990-1002

[14] V.V. Deodhar, J.A. Davis, “Optimization of throughput

performance for low power VLSI interconnects”, IEEE

Trans. VLSI System, Vol. 13, (2005), pp. 308-318

[15] S.-J. Lee, K. Kim, H. Kim, N. Cho, H.-J. Yoo, “Adaptive

network-on-chip with wave-front train serialization

scheme", Symposium on VLSI Circuits Digest of Technical

Papers, (2005), pp. 104-107.

[16] Hedayati, “The new era of programmable systems”, Xcell

Journal, No. 42, (2002), pp. 7-9

