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ABSTRACT 

 
This paper reveals that the techniques for efficient implementation of Field-

Programmable Gate-Array (FPGA)-based Wave-Pipelined (WP) multipliers, 

accumulators, and filters is presented. A comparison of the performance of WP and 

pipelined systems has been made. Major contributions of this paper are development 

of an on-chip clock generation scheme which permits finer tuning of the frequency, a 

synthesis technique that reduces the area and latency by 25%, a placement utility that 

results in 10%–40% increase in speed and proposal of an interleaving scheme for 

filters that reduces the number of multipliers required by 50%. WP multipliers of size 

2 6 and the filters using them are found to be 11% faster and require lower power than 

those using pipelined multipliers. Filters with higher order WP multipliers also operate 

with lower power at the cost of speed. The delay-register products of such filters are 

found to be about 60% lower than those using the pipelined multipliers. The project 

also outlines applications of these techniques for the Spartan II FPGAs and a self-

tuning scheme for optimizing the speed. 

 
 

I. INTRODUCTION 
 

Field Programmable Gate Array based system design is 

gaining extensive popularity due to the flexibility and 

complexity it provides. FPGAs with complexities, as high as 10 

million gates in a single Integrated Circuit (IC) have become a 

reality. This has enabled the FPGA vendors to embed the 

Restricted Instruction Set Computer (RISC) processor in part of 

the core so that in a single IC the advantages of both 

microprocessors and FPGAs can be combined, leading to the 

design of a complete System on a Single Chip (SOC). In view of 

this, the study of FPGA-based implementation of various 

systems that have traditionally been implemented either using 

Application-Specific Integrated Circuits (ASICs) or 

programmable digital signal processors become important. 

Design and FPGA-based implementation of digital signal 

processing blocks using both pipelining and wave-pipelining 

techniques are considered in this project. They are required to 

operate the WP circuits at high speeds. Here in one section 

describes a PC-based testing scheme. This is used for testing all 

the WP circuits, in this article. The case studies were carried out 
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on convolvers and multipliers to bring out the better amenability 

of array multipliers for wave pipelining. 
 

II. LITERATURE REVIEW  
 

Wave-pipelining is projected as one of the method for 

achieving high speed without the cost of increased area and 

circuit complexity. The basic criterion used for partitioning the 

execution path is hard to achieve in practice because of the 

differing amounts of logic per stage and variations in time 

delays per logic element [1&2]. A new critical path approach to 

speeding up wave pipelining technique for Distributed 

Arithmetic Algorithm (DAA) based Finite Impulse Response 

(FIR) filter using a control circuit has been presented by 

Charanjit Singh [3]. Terrence Mak et al [4] proposing a novel 

wave pipelined signaling scheme to achieve substantial 

throughput improvement in FPGAs. A new analytical model 

capturing the electrical characteristics in FPGA interconnect is 

presented. For Xilinx FPGAs, the physical design editor referred 

to as FPGA editor may be used for measuring and altering the 

delays. Using this feature, the implementation of wave-pipelined 

circuits on Xilinx FPGAs is considered in [5]. The availability of 

on-chip dedicated multipliers, soft core/hard core processors and 

IP cores make the FPGAs to be an ideal platform for the 

implementation of area as well as speed intensive image 

processing applications such as Discrete Cosine Transform 

(DCT) and DWT [6].  

The micro architecture of the 32 bit sparse tree adder [7] has 

two main features: asynchronous hybrid wave-pipelined 

processing and a prefix sparse-tree carry generate-propagate 

structure for arithmetic.   V.KrishnaKumari proposed method 

[8] modification is done by replacing the parameter 4-bit carry 

skip adder with 4- bit carry look ahead adder, 4-bit Kogge-Stone 

adders. The BIST approach requires a number of overheads such 

as Finite-State Machine (FSM), signature generator and test 

vector RAM [9&10]. Instead of using a dedicated circuit such as 

Built-In Self-Test (BIST), a processor may be used to carry out 

the tuning and retuning tasks [11]. Despite of the irregularity and 

idiosyncratic nature of FPGA long interconnections, buffers 

were embedded at switches to speed up the signal propagation 

[12]. Recently the focus of wave-pipelining had shifted from the 

logic to the interconnection circuits and a number of 

interconnect wave-pipelining design for ASIC has been 

proposed [13-16] in order to achieve a higher throughput of 

interconnections. 
 

III. METHODOLOGY 
 

The idea of wave-pipelining or maximal rate pipelining was 

first formalized in shift register. Recently, this concept has been 

a subject of renewed interest as technology and design 

techniques have enabled the effective implementation of wave-

pipelining in integrated circuits. The concept of wave-pipelining 

has been described in a number of previous works. To illustrate 

this concept, graphical representation of the data flow through 

combinational logic is used. Fig. 1(a) and (b) shows the 

conventional single-stage system and its associated timing 

diagram. The combinational logic is surrounded by edge-

triggered input and output registers. At the beginning of each 

clock cycle, data is initiated into the logic block at the input 

register. Due to the differences in the circuit path lengths and 

other factors, data delay through the combinational logic will 

vary. In Fig. 1(b), the shaded regions bounded by the maximum 

and minimum delays through the logic Dmax and Dmin depict 

the flow of data through the combinational logic and the 

variations in the logic block with time. The non shaded areas 

depict the stable duration of the logic. In the conventional 

system, the output register is clocked in the non shaded region, 

and the minimum clock period is chosen to be greater than 

Dmax. In the WP system, the clock period is chosen to be 

(Dmax-Dmin) +clocking overheads such as setup time, hold 

time, etc. To ensure correct operation, the clock to the output 

register should be delayed so that the active clock edge occurs in 

the stable period. Moreover maximize the frequency of 

operation of the WP system, the difference (Dmax-Dmin) is 

minimized by equalizing the path delays. As the shaded region 

increases with an increase in the logic depth, the operating clock 

frequency should be reduced to ensure correct operation. An 

alternative technique to avoid decreasing the clock frequency is 

pipelining. However, the need for additional registers increases 

the area, power, latency, and clock routing complexity. On the 

other hand, variation of and due to various factors such as 

difference in rise and fall times, variations due to process, 

environment, and voltage changes make the delay equalization a 

challenging task in WP systems. Several methods need to be 

adopted to achieve the equalization of path delays. Algorithms 

to automatically equalize the delays in combinational logic 

circuit are reported. In a WP multiplier is implemented on 

Normal Process Complementary Pass Transistor Logic 

(NPCPL), and an algorithm is adopted to bring the shortest path 

delay equal to the longest path delay. ASIC based WP systems 

have been successfully implemented for a variety of 

applications.  

 

 

 
 

 
 

Fig. 1(a) Date Flow through Combinational Logic Circuit 
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Fig. 1(b) Temporal/Spatial Diagram of Combinational Logic Circuit 
 

 

 

In the feasibility of wave-pipelining using lookup table 

(LUT)-based FPGAs is studied through the implementation of 

the Guild multiplier Using a two phase clocking scheme, the WP 

circuit is found to be operating ten times faster than the speed 

predicted by the timing analyzer tool (i.e., based on alone). 

External clocks are used for the input and output registers, 

surrounding the multiplier. The skew for the clock to the output 

register is manually adjusted to lie in the stable period, by 

observing the output of the multiplier in Cathode Ray 

Oscilloscope (CRO). The use of external clocks in limits the WP 

circuit to be operated at a lower frequency than what would be 

possible if the clock had been generated within the FPGA. The 

frequency of the externally fed clock signal is restricted by the 

printed circuit board in which the FPGA is mounted and the 

input–output (I/O) pad delays. 
 

A. WP Clock 
 

In medium- and high-density FPGAs, the interconnect 

delays become comparable to those of the active device blocks 

in Configurable Logic Blocks (CLB) such as Look Up Tables 

(LUT) and flip-flops. For example, for the XC4003E-1 device, 

the LUT delay is typically 1.3 ns, and the interconnect delay 

between LUTs can be varied over a range of 0.7–7 ns. A clock 

signal can be generated by interconnecting the output of a 

number of LUTs in cascade to the input of the first LUT in the 

chain. The highest frequency is obtained when a single LUT is 

used as shown in Fig. 2. Low values of interconnect delays such 

as 0.7 ns cannot be achieved if a particular LUT has high fan-

out. High fan-out is desirable since the clock may have to be 

applied to a number of blocks. On implementation of the clock 

in an FPGA, it is observed that an interconnect delay of 1.4 ns 

can be achieved with the least number of interconnect resources 

and reasonably large fan outs. With this delay, a clock period of 

5.4 ns is obtained. The clock generated has a frequency very 

much above what can be fed through the I/O pads using the 

demo board. An alternative scheme for generation of high 

frequency clock is through multiplication of an external clock 

using Delay Locked Loops (DLLs). This feature is not available 

in XC4000 and Spartan family of FPGAs, whereas Spartan II 

and Virtex FPGAs contain DLLs. In these devices, however, the 

maximum multiplication factor can be only 16. However, the 

clock generation scheme described above has the advantage of 

changing the clock periods in smaller steps. Moreover, the clock 

frequency can also be altered through programming by 

controlling the number of LUTs in the forward path of the clock 

generator. To study the drift in the clock frequency, the clock 

signal is divided by a large number and observed in the CRO. 

The clock waveform was found to be stable. Moreover, the 

Static Timing analysis (STA) input of the clock generator 

enables the clock signal to be reset periodically to minimize the 

drift, if any. 
 

 
 

Fig. 2. Clock Circuit 
 

B. Implementation of the WP Counters 
 

The basic clock signal may be used as the least significant 

address input for the RAM in the WP system. Counters may be 

used to generate the higher order addresses for the RAM. In 

XC4003E-1 device, the minimum write cycle time for the flip-

flop in the CLBs is 6 ns. Hence, for clock signals of period 6 ns 

or more, the counter can be implemented using the flip-flops in 

the CLBs. For clock periods less than 6 ns, the counter may be 

realized using the LUTs in the CLBs. Lookup table with 

feedback between output and input functions as a latch. Using 

these latches, a novel WP counter is proposed in this paper. A 2-

bit WP counter is shown in Fig. 3. In this counter, the 

interconnect delay between the output of the first LUT and the 

input to the second LUT is made equal to the interconnect delay 

at the feedback paths of both of the LUTs. The AND and XOR 

functions, indicated in Fig. 3, are implemented using a single 

LUT and the STA input is used for starting the counter. The 

above technique can be extended for the design of higher order 

WP counters. 

 

 
 

Fig. 3 WP Counter 
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C. WP Shift Registers  
 

The circuit diagram of a 4- bit WP shift register is shown in 

Fig. 4. The multiplexers in Fig. 4 operate in two modes. When 

shift enable is 1, the data output from each multiplexer is shifted 

into the multiplexer on the right. When shift enable is zero, the 

data output of each of the multiplexers at the 1–0 transition is 

latched onto the same multiplexer. If the interconnect delay 

between the multiplexers is adjusted to be 1.4 ns and if the LUT 

delay is assumed to be 1.3 ns, then the WP shift register is 

equivalent to a conventional shift register with shift clock period 

of 2.7 ns.  

 

 

 

 
 

 
SE – Shift Enable 

 

Fig. 4. 4-Bit WP Shift Register 

 
 

 

 
 

 

IV. PC-BASED TESTING SCHEME FOR WP CIRCUITS 
 

The operation of simple circuits such as a clock can be 

verified using CRO after suitable frequency division. For testing 

more complex circuits, a PC based testing scheme is developed 

using the General Purpose I/O (GPIO) PC add-on card. The 

GPIO card is assumed to be used for writing the test data into 

the input RAM and reading the output from the output register. 

In order to ensure that the speed of the I/O card does not restrict 

the maximum operating frequency of the WP circuit, it is 

required to carry out the read/write (r/w) operation by the add-on 

card at a rate different from the rate at which the WP circuit 

processes the data. This is achieved by connecting the address 

and data bus of the input RAM as shown in Fig. 5. The address 

multiplexer is implemented in the same FPGA in which the WP 

circuit is implemented. The start and r/w signals are controlled 

by the PC add-on card. After the design is downloaded into the 

FPGA, a testing routine executed from the PC applies the test 

inputs, collects the results, compares them with the expected 

results, and reports the discrepancies if any.  
 

 
 

Fig. 5 PC- Based Testing Skill for WP Circuits 

 

 

V. DESIGN AND IMPLEMENTATION OF FPGA-BASED 

WP DSP CIRCUITS 
 

AWP circuit may be implemented using the layout editor by 

manually choosing the LUTs required, specifying the function to 

be performed by each LUT, the inputs and outputs to be 

interconnected, and the composition of the interconnect for each 

interconnect. Alternatively, to specify the design, the Hardware 

Description Language (HDL) entry may be used and the exact 

location of the CLBs to be used for realizing the different child 

modules in the HDL program may be specified through the user 

constraints file. Moreover, after the placement and routing step 

by the Computer-Aided Design (CAD) tool, the delays have to 

be examined using the layout editor and altered, if required, to 

equalize the delays. Using the second approach and the design 

techniques given in Section IV, WP multipliers multiply 

accumulators, and serial/parallel convolvers are designed and 

implemented. Some details of the design and implementation 

results are presented in this section.  
 

A. WP Serial / Parallel Convolver 
 

As a case study for investigating the feasibility of operating 

the WP circuits faster than the pipelined circuits, a one-

dimensional (1-D) WP 8-tap convolver using 8-bit serial/parallel 

WP multipliers is implemented on Xilinx XC4006E. In the 

serial/parallel convolver, the product bits arrive serially, and 

accumulators are implemented using WP shift registers. The 

categorical matching proposed in [21] is used to equalize the 

path delays. To adjust the clock skew of the output 

RAM/register, for a known sequence of test inputs, the 
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simulated output of the convolver is read and compared with the 

expected result. The clock skew is adjusted until the correct 

results are obtained. The results obtained through simulation are 

compared for convolvers with and without wave-pipelining. The 

WP convolver is found to be faster by a factor of two compared 

with the convolver using pipelining. This is because, for the 

pipelined circuit, the minimum clock period is 6 nos due to the 

limit posed by the flip-flops. The WP convolver requires 73% 

more CLBs. To confirm whether the simulation results match 

with the actual results obtained from the device, the design is 

downloaded to the FPGA and tested using the PC based testing 

scheme described here. From the test results, it is found that the 

convolver does not work correctly. This has indicated the 

inadequacy of the simulation for testing the WP circuits. This 

may be caused by the significant difference between the routing 

delays reported by the layout editor and the actual delays. 

 

 

 

 
 

 
 

Fig. 6. WP 2x2 Serial Parallel Multiplier 

 

 

 

VI. OPTIMIZATION SCHEMES FOR FPGA BASED 

PIPELINED AND WP MULTIPLIERS 

 

 

 

 

 
 

A. Optimally Synthesized Pipelined Array Multiplier 
 

The objective of the synthesis technique proposed in this 

section is to ensure that all of the four inputs of the LUTs in 

FPGAs are effectively engaged. Optimization on the use of four 

input LUTs is considered, as FPGAs from popular FPGA design 

houses such as Xilinx and Altera contain four input LUTs. Let 

us consider the optimization of a 4x4 array multiplier given in 

Figure 7 and the stages involving half-adders utilize the LUTs 

inefficiently. These stages may be modified to engage all of the 

four inputs of the LUT, as follows: Stage1 may be modified to 

compute the partial products due to the two least significant 

multiplier bits. The last stages may be reduced to stages by 

replacing the half-adders with suitable functional blocks and 

feeding the sum and carry outputs from one stage to another 

properly. The resulting pipelined array multiplier is referred to 

as Optimally Synthesized Pipelined Array Multiplier (OSPAM) 

and is shown in fig. It consists of five stages of combinational 

logic blocks. These stages use the functional blocks M0, M2, 

M5, M6, M7, M8, M9, and M10. The inputs and outputs of each 

of these blocks are given in Fig. Using these, logic equations for 

the various blocks can be written. The latency of the multiplier 

is reduced from eight clock cycles to five clock cycles. In 

general, multiplication can be achieved using registers with the 

latency of clock cycles. This scheme results in 25% lower 

latency and requires 25% lower area for implementation. This 

scheme is applicable for both pipelined and WP array 

multipliers.  
 

B. Observations and Results 
 

The pipelined array multiplier implemented using the 

optimization schemes proposed in Sections VII-A and VII-F is 

denoted as OPARAM. The conventional pipelined array 

multiplier, the Guild multiplier, OSPAM, and OPARAM are 

implemented on the XC4010E-1 device. The different 

characteristics of 4x4 multipliers such as number of CLBs 

required fmax maximum operating frequency and latency in 

nanoseconds are evaluated for all the above multipliers and are 

tabulated in Table .The WPARAM of different sizes are 

implemented and tested using both simulator- and PC-based 

testing schemes. WPARAM of size 4x 4 and 2x 6 are found to 

be satisfactory at a clock rate of 185 MHz. However, WPARAM 

of size 4 6 and 6x 6 are found to be satisfactory only at a lower 

frequency. From these results, it may be noted that for a given 

operating frequency, the maximum size of a multiplier that can 

be designed using the wave-pipelining technique is limited. 

However, OPARAM of larger sizes can be directly implemented 

and operated with the clock period of 6 ns. WPARAM of larger 

sizes have to be operated with a lower clock frequency. For 

higher order multipliers, OPARAM is to be preferred, if higher 

speeds are required and any clock frequency lower than 166 

MHz can be used. If power dissipation is the primary concern, 

one may go for WPARAM instead of OPARAM. The 

effectiveness of the structure organizer utility is studied by 

implementing different types of 8x8 multipliers on a Spartan 

XCS30-3VQ100 device (a Xilinx Spartan family device with 

speed grade 3), and the results are given in Table. From Table, it 

may be noted that the structure organizer improves the speed of 

the multipliers by a factor of 1.1 to 1.4 times compared with that 

achieved by using commercially available P&R tools. For larger 

size multipliers and in designs engaging a majority of CLBs in 

an FPGA, the routing complexity is bound to decrease the speed 

of the multipliers further when they are designed with 

commercially available P&R tools. However, the structure 

organizer makes the design operate at maximum rate, 

irrespective of the routing complexity. 
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Fig. 7. Optimally Synthesized Pipelined 4x4 Array Multiplier 

TABLE I. IMPLEMENTATION RESULTS OF PIPELINED 

AND WAVE-PIPELINED ARRAY MULTIPLIERS 
 

Name of the 

Multiplier 

Area in 

CLBs 

Fmax 

(MHz) 

Latency 

(ns) 

Pipelined Array 

Multiplier– 4x4 
48 128 70.3 

Guild Multiplier- 4x4 44 117 68.4 

OSPAM- 4X4 32 131 45.8 

OPARAM- 4X4 32 166 36.0 

WPARAM- 2X4 15 370 10.8 

WPARAM- 2X6 30 185 27.0 

WPARAM- 4X4 32 185 32.4 
 

 

VII. CONCLUSION 
 

The FPGA based WP multipliers have established that they 

are superior to the pipelined multipliers in both speed and power 

for small operand sizes. Higher order multipliers also dissipate 

lesser power but operate at lower speeds. The synthesis 

technique proposed for both WP and pipelined array multipliers 

reduces the area and latency by 25%. Optimization schemes, 

proposed in this article is to enable the increase in the speed of 

the conventional pipelined multipliers by 10% to 40% and have 

led to a reduction in the area by 40% and increase in speed by 

58% for the filters using the interleaving. Application of these 

techniques for WP systems has enabled partial automation of the 

design technique and the filters using WP multipliers result in 

60% reduction in the delay–register product compared with 

those using in pipelined multipliers. 
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