
Flow based anomaly detection system using Reputation and

Evolutionary computation

N.Vadivelan
Research Scholar, Department of CSE, St.Peter’s University, Chennai.

G.Sangar
Assistant professor, Department of CSE, Sakthimariamman Engineering College, Chennai.

K.Prasanth
Assistant professor, Department of CSE, Sakthimariamman Engineering College, Chennai

INTRODUCTION

Discovery, on computer networks, of entities

nefarious and profane is the responsibility of

an Intrusion Detection System IDS.

Techniques for malicious intrusion detection

are as diverse as their targets, with

associated architectures often

Characterized in two ways: 1) network-

based or host-based; and 2) signature-based

or behaviour-based. A signature-based IDS

reacts to strings or traffic flowing across its

aperture that match a signature in a

repository of undesirable bit-patterns. As the

signature repository grows over time, it is

increasingly very difficult to compare every

International Research Journal in Advanced
Engineering and Technology (IRJAET)

ISSN (Print) : 2454-4744 | ISSN (Online) : 2454-4752 (www.irjaet.com)
Vol. 1, Issue 1, pp.61-73, June, 2015

ARTICLE INFO

Article History:

Received 4th, Sep, 2015

 Received in revised form 9th, Sep, 2015

Accepted 25th, Sep, 2015

Published online 26th, Sep, 2015

Keywords:

Intrusion Detection,

Determinal traffic, Network-

based Id, Host-based Id,

Reputation System

ABSTRACT

Intrusion detection system is valuable for defensive the entire network

from a large variety of threats, modern intrusion detection techniques

must manage with not only upsurge the detection rate but also progress

the speed of the network line, signature based ids forced to sample

meagrely, increasing the prospect of detrimental traffic flowing towards

the network without inspection consequently, flow based id is attaining

awareness as an effective complement. Basically ids are classified in to

network based or host based. The independent multi agent design idea is

a scalable, striking option for its potential to influence the strengths of

both architectures: the broad perspective and visibility into distributed

harmful activity provided by network-based ID, and the complete view

of the local node provided by host-based ID. This paper develops

architecture for a new multi agent, flow based intrusion detection

system. The architecture is designed in two iterations of increasing

complexity. These innovative designs are used to find nodes by

“reputation “concept that are most effective for classifying harmful

network activity. Every system has to design which includes the growth

of an innovative classifier that uses Reputation System which provides a

Classification

P a g e | 62

packet with every signature. The IDS can

become overwhelmed with processing and

fail to detect many malicious packets. The

behaviour-based IDS, on the other hand,

reacts to anomalous system activities.

Unfortunately, the behaviour-based IDS is

designed to notice the symptoms of an

already-infected subject. A technique

complementary to both these approaches

examines statistics related to the inbound

and outbound traffic flows This IDS flow-

based model is particularly suited for

network attacks that make large disturbances

in the distributions of these statistics. Multi

point evolutionary algorithms to assist in the

search for efficient functioning parameter

values. Extensive agent simulation

framework which highlights the condition

under the Network-based intrusion detection

(ID) is typically implemented at the

network’s gateway. With this system

vantage point, it may be able to detect

patterns involving multiple hosts that

individually would appear innocuous. It is

technically challenging or impossible,

however, for the network-based IDS to

inspect every packet given today’s network

line speeds, and such an approach inevitably

fails to protect individual hosts from every

attack.

Host-based ID can be highly responsive to

local situations, but has no knowledge of

malicious activity that is inherently

distributed across the network. A multi agent

system paradigm applied to ID attempts to

get the best of both of these structural

approaches. This paradigm can provide for

autonomous, mobile agents that reside

transiently at network hosts. Sperot to et al.

[16] survey current flow-based ID

techniques. In each of 14 systems in their

survey, data processing is centralized. In all

but four of these systems, data collection is

also centralized. In concluding remarks, they

point to the research opportunities in ”the

development of distributed flow-based

intrusion detection systems.” Hence, this

paper discusses a research investigation that

develops and analyzes an iteration design of

a scalable ID architecture using a multi

agent, flow-based intrusion detection system.

Nation states loom large in the battle for

cyberspace, and international tension is

continually on media display. Relatively

benign evidence of this is seen in

assessments of strategic competitor’s

network operations capabilities [12]. Of

more immediate mediate impact are cases

where such capabilities have been put to use.

A specific example that recently dominated

headlines is the Stuxnet worm. Mafia-style

cyber-crime establishments are also rapidly

expanding, giving rise to pervasive phishing

and botnet herding activities. Even the script

kiddies, equipped with powerful and

publicly available tools, wreak cyber havoc.

II. SCOPE OF INVESTIGATIVE

DOMAIN

The generic network of interest to this

research is the Autonomous System (AS)-

level of the Internet. Each Autonomous

System is defined as an administrative

domain, comprising within one or more

networks of routers, switches, edge devices,

and other physical elements, sometimes

involving thousands of addresses. Attacks of

interest include those that heavily impact the

distribution of the traffic arriving at any

given node. Some representatives of this set

are: Scans, Distributed Denial of Service

Attacks (DDoS) and Worms. Our goal is to

develop an effective flow-based, multi agent

system for inter-AS network attack

classification. It is our hypothesis that we

can increase the effectiveness of a flow-

based, multi agent network attack classifier

by: • Employing ”reputation” to motivate

P a g e | 63

agents to move when perceived as not

providing useful information to peers;

• Decaying the reputation value regardless of

ratings received to provide continual impetus

for agents to find the best vantage points.

The validation of the hypothesis drives

specification of the following research

objectives and associated evaluation

benchmarks:

1) Develop an effective network simulation

environment appropriate for the problem

scope.

2) Validate the proper functioning of

simulated malicious traffic.

3) Validate the proper command, control,

and communications in the multi agent

intrusion detection system.

4) Study the effects of several factors on

classification accuracy.

III. INVESTIGATIVE APPROACH

Our research effort consists of two design

iterations to ease the complexity of

developing ID systems. In each, a network

simulation environment, simulation

scenarios, and a multi agent system to

classify current network activity are

developed. Network simulations employ

topology and traffic models reflecting

associated observations of the Internet. Self

organization in the multi agent systems is

promoted via the use of a ”reputation”

system and evolutionary algorithms for

automatic discovery of effective system

parameter settings. The first investigative

design iteration develops MASNAC (MAS

Network Attack Classifier):

• A basic network simulation environment

implemented within a Discrete Event

Simulation (DES) framework;

• Scenarios for this network environment

involving:

10-node networks;

2) Background traffic patterns mimicking

the distribution of traffic seen on the actual

Internet;

3) DoS attacks;

• A multi agent system for network attack

classification employing reputation as a

means of governing agent mobility.

The second design iteration, MFIRE (Multi

agent, Flow based Intrusion detection system

using Reputation and Evolutionary

computation), represents an architectural

redesign, but incorporates all features from

the first iteration and adds many additional

features, including:

• A more complex network simulation

environment enabling inter process

communication;

• 100-node networks with topological

characteristics following those of real-world

AS networks;

• Additional malicious scenarios including

DDoS attacks, scans and worms;

• A robust communications protocol for the

multi agent system, designed to handle

transmission losses and other errors.

A. The Use of Reputation

Our reputation system is focused on

evaluating agents’ ability to share “useful”

information. It is used both to determine the

strength of stochastic preference when

agents are selected to share information as

well as to trigger migration to another node.

To elaborate, each agent collects, from its

host node, a series of local traffic statistics.

Some agents are selected to share summaries

of these statistics with other peers. Each

P a g e | 64

agent then makes use of both local as well as

shared information to make an individual

classification, which is sent to a central

entity (controller). Each agent is essentially

“voting” on each cycle with respect to the

overall classification of the recently

observed network activity. The reputation of

each agent is affected by whether shared

information helped recipients vote in step

with the majority, compared with how the

recipient would have voted using only local

information, resulting in a rating in each

case.

B. Internet modeling

The testing environment for our multi agent

security research must be both practical and

relevant. Simulation can address both issues,

but only if the network is modelled properly.

The two major issues that arise in attempting

to properly model the internet environment

are topology and traffic. Approximating the

topology of the Internet is discussed in [11].

Empirically derived power laws enable the

generation of models of the Autonomous

System (AS)-level Internet topology. In [1],

Barab´asi and Albert show that power law

graphs can be constructed by starting with a

random graph and applying incremental

growth, enforcing new nodes to prefer

connecting to existing, well-connected

nodes. With respect to Internet traffic

modeling, in recent years a considerable

body of research has concluded that self-

similar distributions that exhibit fractal

behaviour (similar statistical properties at

any scale) are superior to the models used

earlier in pre-Internet telecommunications

network traffic modelling (e.g. Poisson) [2],

[4], [11], [17]. We use the Pareto model,

which is capable of modelling traffic bursts

visible at any scale. Such scale-invariant

potential for traffic bursts is a commonly

observed property of sampled Internet

traffic.

C. Pattern Recognition Application

While legitimate traffic is ‘bursty’, flow-

based Denial of Service (DoS) traffic

saturates, consuming most or all available

resources for an extended period of time.

Our objective is to detect the disruptive, non-

legitimate traffic-generating processes and

their targets. To accomplish this, we turn to

techniques developed in the general field of

pattern recognition [3], [8]. A general

description of a pattern recognition system

includes the elements depicted in Fig. 1. In

[5], [6], each of the pattern recognition

system elements are discussed in detail: Pre-

processing, Feature generation, and

Dimensionality reduction, along with the

three fundamental objectives of pattern

recognition - Clustering, Classification, and

Regression.

D. Multi Agent Systems on Networks

Patil et al in [15] survey several distributed,

active systems, asserting some advantages

over static IDSs. In particular, instead of

shipping heavyweight raw data collected

from sensors to central processing stations,

the mobile agent-based IDS moves the

relatively lightweight processing code (the

agent) to the data. Jansen’s overview of

mobile agent-based IDSs, [10], asserts the

benefits of efficiency, scalability, and

robustness in such systems for detection as

well as response. Security concerns are dealt

with via agent signing by system security

officers following validation and signing

and/or encryption of agent state information

during execution.

IV. MASNAC NETWORK

SIMULATION AND MAS DESIGN

Deriving from the principles discussed we

present an initial problem domain

environment for simulating denial of service

attacks on AS-level sections of the Internet,

P a g e | 65

and a multi-agent system for identifying sources and targets of these attacks.

A MASNAC Structural Overview

Our MAS system [5] is distributed in the

sense that each rule-based agent resides on a

different node in the network, making

judgments that rely on a combination of 1)

direct node observations of traffic statistics

and 2) observations requested from other

agents. For initial feature selection, our

detailed design relies on the multi objective

evolutionary algorithm. For agent

distribution and provider selection, a

reputation system [14] provides performance

feedback, motivating agents to find good

vantage points in the local neighbourhood

and helping them assess the value of peer’s

observations. Our network model is built

upon MASON, a discrete-event multi agent

simulation engine (see [13]), which was also

used for SOMAS (Self-Organized Multi

Agent Swarms), our previous agent effort

[9]. Formally, we define in [7] a flow-based

network with no observable features, and

observed denial-of-service attacks A

containing disjoint attack class subsets. We

find a solution which defines the selected

features. Using the selected features, the

class mean of each attack class is calculated,

and subsequently each attack is classified

using a Minimum Euclidean Distance

classifier. As we wish to minimize the

classification error for all attack classes, the

solution is evaluated using multi-objective

criteria. We can examine, for example, the

MASNAC simulation network depicted in

Fig. 2 subjected to attack classes defined by

Table I. The numbers in the Source and

Target columns of Table I refer to the labels

of the nodes in Fig. 2. Attack classes are

constrained such that each class consists of

one DoS process and one target. In

particular, all combinations of three DoS

source nodes and three target nodes are

considered, as well as a “no attack” scenario,

for a total of ten attack/activity classes. Note

that MASNAC network animation provides

temporal performance insight.

FIG.2.A General Perspective of a Pattern Recognition System

 Pattern Recognition System

Unsupervised

Pre-

processing

 Feature

generation

Dimensional

ity

Reduction
Data

Clustering

Classificati

on

Regression

Outp

ut

P a g e | 66

MASNAC ATTACK CLASSES

Class Attack Target

1

2

3

4

5

6

7

8

9

10

0

9

5

0

9

 5

 0

 9

 0

 -

7

7

7

3

3

3

2

2

2

-

Table 2:how agents rate providers of shared observations | Classification result based

on observation sets used

B. Multi Objective Evolutionary Algorithm (MOEA)

We define features as the mean or standard

deviation of the amount of traffic received

over a specified period, received from a

particular link, and bound for a particular

destination. The three periods used are two,

five, and ten time steps wide, allowing the

system to use a mix of short, medium, and

long term statistics. Extended discussion of

the MASNAC MOEA approach can be

found in [5], [6] where the NSGA-II MOEA

was employed. We use an initia l base

reputation value of 0.5, and Table II to

determine how to modify each agent’s

reputation. As can be seen from Table II,

agents, having each selected a single other

agent to provide shared observations, rate

their providers based on the effect the shared

observations had on the classification of the

observed activity. For detailed agent

o p e r a t i o n s s e e [5] .

C. MASNAC Classifier Design

Evaluation:-

The MASNAC MOEA objectives are to

minimize classification error of each class

and minimize number of features selected.

Specific MOEA parameters we used after

initial testing are:

• classes: 10 network activity scenarios,

including nine single-source, single-target

DoS attacks and one scenario

with only normal (Pareto distributed) traffic.

Local Only Local +

Shared

Rating

Same as

majority

Same as

majority

Different From

majority

Different From

majority

Same as

majority

Different From

majority

Same as

majority

Different From

majority

+0

-0.1

+0.1

-0.05

P a g e | 67

• chromosome: feature selection bit-string.

There are 204 bits. These bits can be

grouped according to node. For

each node, there are 6 * [number of links

connected to the node] bits.

• population size: 200

• max number of generations: 200,000

• crossover: single point, probability 0.9,

distribution index 20.0

• mutation: bit flip, probability of flipping

each bit in each chromosome is 1 / number

of bits = 1/204, distribution

index 20.0

• selection: binary tournament

Because we are optimizing across attack

classes as indicated in table I, various

combinations of the ten attack classes can be

visualized as Pareto fronts in 2D or 3D

combinations. One of

the more interesting is figure 3 which

indicates non-dominated values (Pareto

front) across three classification errors – note

the outliers. Very similar results occur for

the other error combinations. The feature

sets (Pareto solutions) selected by our

MOEA is accomplished in ten dimensions

by using a table technique. The associated

best feature sets (chromosomes) on this

implicit ten dimensional surface are selected.

The resulting solutions are feature-selection

bit vectors with about 25 features with about

2-3 selected features per node per agent for

classification.

V. MFIRE NETWORK SIMULATION

AND MAS DESIGN

A new system design is required for

autonomous classification of network attacks

in a more complex network simulation. This

is a natural outcome of progress in ID

system design; a more refined network

model requires and inspires a more

enlightened approach to the design of its

defences. Yet, the high-level principles are

retained; as before, the second design

iteration leverages the multi agent system

paradigm with several performance-

enhancing details. The agents are designed

to be mobile and cooperative in terms of

sharing feature observations. Over a series of

simulated attacks, the integrated system

searches for a ‘good’ distribution of agents

via a ‘reputation’ system. The parameters of

this reputation system are improved a priori

via a multi-objective evolutionary algorithm.

A. Formal MFIRE Problem

Specification

Ultimately we seek to 1) maximize the

classification accuracy of all attack classes;

and 2) use minimal network bandwidth. This

requires an effective spatial distribution of a

limited number of agents, where each agent

uses a limited number of features to make

local classification determinations. These

determinations are then shared with a

centralized controller. Note that the formal

definition provides an unambiguous template

for design implementation. The formal

MFIRE notation can be found in [5] using

the support vector machine (SVM) as the

agent-level classification technique.

P a g e | 68

B. MFIRE Network Simulation and

MAS

Design Overview:-

The MFIRE package hierarchy involved in

the simulation is based upon object-oriented

software design. The controlled, one-way

dependencies between the visualization

layer, the domain layer (labeled ‘MFIRE’),

and the application layer(‘MASON’) exhibit

a software engineering principle known as

Model-View Separation This principle states

that domain objects should not have direct

knowledge of view (UI) objects. It allows

the visualization layer to be changed without

requiring any changes in the domain or

application layer [5].The domain layer

consists of the following groups of classes:

Network, Scenarios, Processes, Payloads,

Multi agent system, Classification. The

MASON discrete event simulation engine

package is interfaced which provides many

vital facilities for the execution of the

simulation as well as the visualization.

Network Simulation design objectives for

the physical aspect of the AS-level Internet

simulation include: 1) Employing a topology

representative of the AS level of the Internet;

2)Allowing for multiple scales of AS

networks in terms of maximum link distance

and 3) Providing visualization/animation

facilities to enhance intuitive understanding

of simulation execution. We select Top Gen

for having incorporated some of the most

up-to-date observations about the real

Internet AS topology. In particular, the

Controlled Distance model is used to

generate100-Node networks. Using TopGen,

MFIRE sets link lengths by calculating the

Euclidean distance and scaling to a specified

range. Once the topology is in place, the

Floyd Warshall routing algorithm initializes

each Node’s routing table. The result is that

when there is no contention for bandwidth,

packets always takes the shortest path to the

destination. When the preferred link is

saturated with traffic, an alternative link is

selected at random. If the alternative link is

also saturated, the packet is discarded. The

four main traffic patterns are characterized

that dominate the simulation. Observe that

agents also generate traffic patterns of their

own when communicating, but this is

normally insignificant in comparison with

the patterns described:

1) Simulated Normal traffic follows Pareto

distributions [17].

2) Simulated DDoS Traffic Scenarios -

Flooding-based Distributed Denial of

Service (DDoS) attacks

3) Simulated Scan Traffic

4) Simulated Worm Traffic

 C MFIRE MAS Design:-

Having completed the design of the

simulation framework, the simulated

network’s topology generation, components,

and dominant traffic-generating processes,

what remains is the multi agent system

charged with distinguishing begins traffic

patterns from malicious. The collective

activity of the population of agents is tied

together at the multi agent system (MAS)

level through a controller, which processes

the classification decisions (‘votes’) of

individual agents and reports the majority

result. The controller also stores and

manages agent reputations. Note that the use

of a controller makes the multi agent system

more vulnerable to disruption, but simplifies

the design considerably.

1) MFIRE Design Operational Objectives:

Design objectives for our multi agent system

include:

• Minimize classification error

• Minimize bandwidth

• Provide a robust communications protocol

to cope with disruptive traffic patterns The

first two competing objectives are achieved

by finding a ‘good’ distribution of a small

population of agents. The agents are mobile,

and their location stability is governed by a

centralized reputation system managed by

the agent controller.

The third objective is elaborated following

an overview of the

P a g e | 69

MAS flow of execution.

2). MFIRE Execution Flow Design:

The explanation of MFIRE’s high-level

states is made simpler by assuming agents

have been collecting observations from their

respective host nodes for nearly a full cycle

when it comes time to check in with the

Agent Controller. Furthermore, each agent is

assumed to have a reputation stored with the

Agent Controller. The process is:

• Agents check in with the controller

• Controller makes observation-sharing

assignments

• Agents exchange observations per

assignments

• Agents calculate and share results with the

controller

• Wrap-up:

– The Agent Controller tallies the votes.

– The Agent Controller updates Agent’s

reputation.

– The Agent Controller sends each Agent a

STAY or a MOVE instruction.

3) MFIRE Robust Communications: Each

agent synchronizes its clock to match that of

the controller and thereby determine the

schedule indicating the time of future state

transitions.

This allows the Agent to start collecting

observations at the same time as others in the

system, check in with the Agent Controller

at the right time, and so forth. Clock

synchronization uses the same basic

algorithm employed by the Network Time

Protocol (NTP) described in internet RFC

5905. The Agent sends a SYNC message to

the Agent Controller. The Agent Controller

responds with SYNCREPLY, which

contains the time it received the SYNC

message as well as the time it sent the

SYNCREPLY. The Agent determines the

offset by which it needs to adjust its internal

clock to match that of the Agent Controller.

In the MFIRE Agent, a feature selection

filter method based on Bhattacharyya

coefficient analysis ranks the features

according to a measure of how well they

distinguish each class from the others. The

top three features from this Bhattacharyya

distance-based ranking are preferred.

Additionally, we examine the correlation

between candidate features. When a pair of

features exhibits strong correlation, one of

the two is rejected because it is unlikely to

contribute useful information beyond what

the retained feature provides.

In MFIRE, the agent-level classifier is a

Support Vector Machine (SVM). The SVM

technique is selected due to its “high

generalization performance without the need

to add apriori knowledge,” even in the face

of many features. The ability of MFIRE to

find effective agent distributions (in terms of

location) without external influence is

evidence the system possesses attributes of

self organization. As summarized by

Dempster: “Self-organization refers to

exactly what is suggested: systems that

appear to organize themselves without

external direction, manipulation, or control.”

D. Java Implementation

We use the jMetal optimization software

package which provides the necessary

features for our research: it handles

continuous as well as combinatorial

problems, is an open framework, and is

implemented in Java. The Java

implementation facilitates integration with

MASON, MASNAC, and MFIRE. The high-

level and low-level designs of MFIRE and

its network simulation environment are

implemented following the respective design

closely.

VI. DESIGN OF MASNAC

EXPERIMENTS VIASIMULATION:-

As reported in [6], [7], the experimental

MASNAC design measures and compares

the classification accuracy of systems using

combinations of the following parameters:

• Number of agents: two, three, and four

• Reputation: not used, used without decay,

and used with decay; denoted in some of the

tables respectively as A, B, and C

• Time: four, eight, twelve, and sixteen time

steps into the simulation, denoted T1, T2,

T3, and T4 Each experiment consists of one

combination of the above parameters and

100 attack rounds. For each round, the attack

P a g e | 70

is selected uniformly randomly. Each

experiment is run 30times to achieve a

measure of statistical relevance. Note that

when reputation is not used, on each round

each agent uniformly randomly selects a

peer to provide shared observations. Agents

in this case do not move from their

randomly-selected starting nodes. All links

have capacities of 20 units in both directions,

which is adequate to handle all but the most

severe traffic bursts generated from a Pareto

model with α = 2.0 and b = 0. Nodes have

capacities equal to 80% of the maximum

amount of data that can arrive in a single

time step, which is 20multiplied by the

degree of the node. Any node receiving more

than this amount of traffic, on any given

time step, shuts down, muting all resident

processes and rendering all connected links

unusable; thus, attempting to represent

realistic scenarios. The intent of these initial

experiments is to provide insight as to

classification accuracy with given reputation

parameter values and agent communication

patterns.

A. Results and Analysis for MASNAC:-

Several experimental observations can be

made from the statistics reported in [5].

These results are an update of those in [6]

based upon more extensive testing. But the

qualitative results remain the same. First,

regardless of the number of agents used, and

regardless of the time step at which the

classification is made, using reputation

generally outperformed the system that did

not. Using reputation with decay generally

outperforms using reputation without decay.

Decay spurs those agents not receiving

negative ratings to nevertheless move to

different nodes if over time they do not

receive positive ratings, either. It is

presumed that this slight increase in

exploration yields the measured benefits, but

Wilcox on Rank Sum hypothesis testing

reported in [5], [7] (see Table IV) indicates

that this cannot be conclusively asserted in

all cases. Second, in most cases

classification accuracy degraded with

increased time. This is because as time

passes during a denial of service attack,

more nodes have the possibility of shutting

down, generating cascading effects as

packets are routed differently. With a larger

window of time, the variance in the traffic

statistics grows, making minimum Euclidean

distance based classification more difficult.

Third, the standard deviation trends

downward from using no reputation, to using

reputation without decay, to using reputation

with decay, reflecting potentially more

consistent results from the latter system. In

Table III for the four agents case, bold

indicates the ‘best’ value obtained for the

column statistic. In the ‘Mean’ column only,

numbers in italics represent the ‘best’ values

obtained for a particular classification time

across the three approaches. In the four agent

case, three of the four best mean results

areproduced by reputation without decay.

Reputation with decay achieves the best

mean result at T3, and posts the best results

for standard deviation in all levels of the

time factor. However, Table IV indicates

that it is the system using reputation without

decay that achieves statistically significant

better performance than the system not using

reputation for T1 and T2. At T3, using

reputation with decay does achieve

significantly better performance than using

reputation without decay, but neither system

significantly outperforms the system that

does not use reputation. The primary effect

of reputation decay is to induce mobility in

stagnate agents, but mobility becomes less

important with a higher agent-to-node ratio.

A ”safe” distance needs to be defined by the

operator given the mean statistical numbers.

Using improved classification techniques in

MFIRE, statistical testing classification

accuracies are anticipated to improve.

VII. RESULTS AND ANALYSIS FOR

MFIRE

The experimental design for MFIRE focuses

on the evaluation benchmarks for the first

three previously stated research objectives:

1) Develop an effective network simulation

environment appropriate for the problem

scope.

2) Validate the proper functioning of

simulated malicious traffic.

3) Validate the proper command, control,

and communications in the multi agent

intrusion detection system.

P a g e | 71

Fig. 4. Classification accuracy of MASNAC under different parameter each box plot: no

reputation; reputation without decay; reputation with decay for Four Agent System

In general, the second iteration design and

implementation represented by MFIRE must

achieve and cope with greater complexity

and realism than the earlier MASNAC-

focused iteration. The fourth research

objective listed above,

1) Study the effects of several factors on

classification accuracy,

will be addressed in the future, with the

intent to demonstrate that the use of a

reputation system increases the accuracy of

the multi agent network attack classifier

within our extended network simulation and

multi agent framework MFIRE.

A. MFIRE and Simulation Environment

Assessment

Assessment of the effectiveness of the

MFIRE’s network simulation environment

includes the following tests, resulting from

the research objectives and benchmark

specifications.

• Implement a DDoS attack and a ping

process

• Implement a UDP-style scan attack

• Implement a worm process and an insecure

process.

1) MFIRE: DDoS Test: This test creates a

DDoS attack scenario involving multiple

DoS attackers, a single target, and an ping

process that pings the target before and after

the attack starts. The output indicates that the

ping process sends two sets of pings, with 10

pings in each set. The ping process sends

one ping on each time step and receives

100% response for the first set of pings with

no variance in delay. The DDoS then

commences from six sources. Figure 5

provides visual indication of what happens

in this scenario. In this visualization, each

link is divided in half by a black band. For a

given node with an attached link, the half of

the link directly connected to it shows

inbound traffic flow, while the half on the

other side of the band shows outbound

traffic flow to the adjacent node. The shade

of each half link changes according to load:

white, on one

end of the spectrum, represents zero load;

black, on the other end, represents maximum

load. Observe that most of the links inbound

to the target are at or near maximum

capacity. Spill over effects are evident at the

adjacent node toward the top of the figure. A

short time after the DDoS begins, the ping

process starts sending the second set of

pings. Responses are received for the first

four. The time delay of these responses is

significantly longer than what was

experienced for the previous set of pings,

with the last taking more than twice as long

to return(33 time steps vs. 16). The cause of

this delay is the random rerouting of the

packets when the preferred link is full. The

P a g e | 72

rest of the pings fail, for a total loss rate of

60%. This qualitative test demonstrates the

desired effect: reliable ping response in the

absence of a DDoS attack, and unreliable

response in its presence.

2) MFIRE: Scan Test: This experiment

demonstrates how a scanning process

discovers ports with potentially vulnerable

processes. Scan packets are sent to a range

of nodes and ports. Insecure processes

respond with “OK,” while other processes

make no response at all to the unexpected

packets. For all other ports, the node sends

“UNREACHABLE” back to the scanner. In

this test the scanning process successfully

reports the evidence of insecure and

unknown processes distributed among the

scanned nodes on random ports.

3) MFIRE: Worm Test: The Worm test

creates a worm that makes one propagation

attempt (attack) each time step. The

environment has four vulnerabilities. Each

node has a resident Insecure Process with at

least one and up to four of these

vulnerabilities. Each vulnerability is

assigned a per attack success rate (assuming

a matching exploit) of 20%. The worm is

armed with exploits for two of the four

vulnerabilities, selected randomly. Results

indicate increases over time in the number of

infected nodes as well as the number of

distinct infected nodes making at least one

successful attack. In both cases, exponential

growth is evident for the majority of the

simulation, until growth tapers off because

most of the hosts vulnerable to one

of the worm’s exploits have already been

infected. Our animation for the worm

provides a visualization of the infected

network [5]. In this scenario, the scale is set

to ‘regional’, allowing link lengths up to 10

units. Black bands separate each of the

segments of the link, but one black band

divides the link in half. Each half of the link

is visually representative of the same

concept as used in the DDoS test case: all

traffic on each half of the link flows toward

the node to which it is directly attached, thus

providing a visual separation of the full

duplex nature of the link. While no single

link in our worm visualization appears

saturated as is the case in the DDoS

scenario, many links are sustaining high

loads at this point in the simulation, which is

at approximately t = 120 or near the point at

which the growth of the worm slows for lack

of uninfected and vulnerable targets. Having

demonstrated the desired qualitative effects,

this worm attack test is successful. As the

third of three complex behaviours, the

successful implementation of the worm

attack demonstrates the ability of MFIRE’s

network simulation to support a range of

flow-based attacks, satisfying two

objectives.

4) MFIRE Communications and Execution

Flow Tests:

The remaining tests involve the

communications protocol and execution flow

of MFIRE. Eleven test cases, detailed in [5],

demonstrate a range of communications

failure responses. All test cases are

successful.

VIII. CONCLUSION

Our successful research effort develops, in

two design iterations, MASNAC and

MFIRE, unique multi agent systems

designed to engage in flow-based intrusion

detection in a distributed way. One of the

major innovations of this effort involves the

use of reputation as a means of influencing

the mobility patterns of the agents. Other

innovations include a new network

simulation environment for MASON, an

associated animated visualization, and the

integrated use of multi objective

evolutionary algorithms in the multi agent

classifier systems.

References

[1] M. Becchi, “From Poisson Processes to

Self-Similarity: an Survey of Network

Traffic Models,” 2008. [Online]. Available:

http://www.rajjain.com/cse567-06/ftp/traffic

models1.pdf

[2] R. O. Duda, P. E. Hart, and D. G. Stork,

Pattern Classification (2
nd

Edition), 2nd ed.

Wiley-Interscience, November 2000.

[3] V. Frost and B. Melamed, “Traffic

Modelling For Telecommunications

http://www.rajjain.com/cse567-06/ftp/traffic%20models1.pdf
http://www.rajjain.com/cse567-06/ftp/traffic%20models1.pdf

P a g e | 73

Networks,” IEEE Communications

Magazine, 1994.

[4] D. Hancock, “Multi agent system for

flow-based network attack classification,

”Master’s thesis, Air Force Institute of

Technology, Wright Patterson AFB, OH,

March 2011.

[5] D. L. Hancock and G. B. Lamont, “Multi

Agent Systems on Military Networks,” in

Proceedings of the IEEE Symposium Series

on Computational Intelligence. IEEE, 2011.

[6] ——, “Reputation in a Multi Agent

System for Flow-Based Network Attack

Classification,” in Proceedings of the IEEE

Symposium on Intelligent Agents. IEEE,

2011.

[7] T. Hastie, R. Tibshirani, and J. Friedman,

The Elements of Statistical Learning: Data

Mining, Inference, and Prediction, Second

Edition(Springer Series in Statistics), 2nd ed.

Springer, February 2009.[Online]. Available:

http://www-stat.stanford.edutibs

/ElemStatLearn/

[8] E. Holloway and G. Lamont, “Self

organized multi-agent entangledhierarchies

for network security,” in Proceedings of the

11th Annual Conference Companion on

Genetic and Evolutionary Computation

Conference.ACM, 2009, pp. 2589–2596

[9] T.H. Ptacek and T.N. Newsham.

Insertion, Evasion and Denial of Service:

Eluding Network Intrusion Detection.

Technical report, Secure Networks, January

1998.

[10] M. Ranum. Experience Benchmarking

Intrusion Detection Systems. NFR Security

White Paper, December2001.

[11] M. Roesch. Snort - Lightweight

Intrusion Detection for Networks. In

Proceedings of the USENIX LISA’99

Conference, November 1999.

[12] S. Northcutt et. al., Intrusion Signatures

and Analysis. New Riders Press, 2001.

[13] S. Patton, W. Yurcik, and D. Doss, An

Achilles’ Heel in Signature-Based IDS:

Squealing False Positives in SNORT. Recent

Advances in Intrusion Detection (RAID),

Univ. Of\ California-Davis, 2001.

[14] V. Paxson, Bro: A System for Detecting

Network Intruders\ in Real-Time, 7th

USENIX Security Symposium, 1998.

http://www-stat.stanford.edutibs/

