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INTRODUCTION 

Discovery, on computer networks, of entities 

nefarious and profane is the responsibility of 

an Intrusion Detection System IDS. 

Techniques for malicious intrusion detection 

are as diverse as their targets, with 

associated architectures often 

Characterized in two ways: 1) network-

based or host-based; and 2) signature-based 

or behaviour-based. A signature-based IDS 

reacts to strings or traffic flowing across its 

aperture that match a signature in a 

repository of undesirable bit-patterns. As the 

signature repository grows over time, it is 

increasingly very difficult to compare every 
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ABSTRACT 

 

Intrusion detection system is valuable for defensive the entire network 

from a large variety of threats, modern intrusion detection techniques 

must manage with not only upsurge the detection rate but also progress 

the speed of the network line, signature based ids forced to sample 

meagrely, increasing the prospect of detrimental traffic flowing towards 

the network without inspection consequently, flow based id is attaining 

awareness as an effective complement. Basically ids are classified in to 

network based or host based. The independent multi agent design idea is 

a scalable, striking option for its potential to influence the strengths of 

both architectures: the broad perspective and visibility into distributed 

harmful activity provided by network-based ID, and the complete view 

of the local node provided by host-based ID. This paper develops 

architecture for a new multi agent, flow based intrusion detection 

system. The architecture is designed in two iterations of increasing 

complexity. These innovative designs are used to find nodes by 

“reputation “concept that are most effective for classifying harmful 

network activity. Every system has to design which includes the growth 

of an innovative classifier that uses Reputation System which provides a 

Classification 
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packet with every signature. The IDS can 

become overwhelmed with processing and 

fail to detect many malicious packets. The 

behaviour-based IDS, on the other hand, 

reacts to anomalous system activities. 

Unfortunately, the behaviour-based IDS is 

designed to notice the symptoms of an 

already-infected subject. A technique 

complementary to both these approaches 

examines statistics related to the inbound 

and outbound traffic flows This IDS flow-

based model is particularly suited for 

network attacks that make large disturbances 

in the distributions of these statistics. Multi 

point evolutionary algorithms to assist in the 

search for efficient functioning parameter 

values. Extensive agent simulation 

framework which highlights the condition 

under the Network-based intrusion detection 

(ID) is typically implemented at the 

network’s gateway. With this system 

vantage point, it may be able to detect 

patterns involving multiple hosts that 

individually would appear innocuous. It is 

technically challenging or impossible, 

however, for the network-based IDS to 

inspect every packet given today’s network 

line speeds, and such an approach inevitably 

fails to protect individual hosts from every 

attack.  

Host-based ID can be highly responsive to 

local situations, but has no knowledge of 

malicious activity that is inherently 

distributed across the network. A multi agent 

system paradigm applied to ID attempts to 

get the best of both of these structural 

approaches. This paradigm can provide for 

autonomous, mobile agents that reside 

transiently at network hosts. Sperot to et al. 

[16] survey current flow-based ID 

techniques. In each of 14 systems in their 

survey, data processing is centralized. In all 

but four of these systems, data collection is 

also centralized. In concluding remarks, they 

point to the research opportunities in ”the 

development of distributed flow-based 

intrusion detection systems.” Hence, this 

paper discusses a research investigation that 

develops and analyzes an iteration design of 

a scalable ID architecture using a multi 

agent, flow-based intrusion detection system. 

Nation states loom large in the battle for 

cyberspace, and international tension is 

continually on media display. Relatively 

benign evidence of this is seen in 

assessments of strategic competitor’s 

network operations capabilities [12]. Of 

more immediate mediate impact are cases 

where such capabilities have been put to use. 

A specific example that recently dominated 

headlines is the Stuxnet worm. Mafia-style 

cyber-crime establishments are also rapidly 

expanding, giving rise to pervasive phishing 

and botnet herding activities. Even the script 

kiddies, equipped with powerful and 

publicly available tools, wreak cyber havoc. 

 

II. SCOPE OF INVESTIGATIVE 

DOMAIN 

The generic network of interest to this 

research is the Autonomous System (AS)-

level of the Internet. Each Autonomous 

System is defined as an administrative 

domain, comprising within one or more 

networks of routers, switches, edge devices, 

and other physical elements, sometimes 

involving thousands of addresses. Attacks of 

interest include those that heavily impact the 

distribution of the traffic arriving at any 

given node. Some representatives of this set 

are: Scans, Distributed Denial of Service 

Attacks (DDoS) and Worms. Our goal is to 

develop an effective flow-based, multi agent 

system for inter-AS network attack 

classification. It is our hypothesis that we 

can increase the effectiveness of a flow-

based, multi agent network attack classifier 

by: • Employing ”reputation” to motivate 
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agents to move when perceived as not 

providing useful information to peers;  

• Decaying the reputation value regardless of 

ratings received to provide continual impetus 

for agents to find the best vantage points. 

The validation of the hypothesis drives 

specification of the following research 

objectives and associated evaluation 

benchmarks:  

1) Develop an effective network  simulation 

environment appropriate for the problem 

scope. 

2) Validate the proper functioning of 

simulated malicious traffic. 

3) Validate the proper command, control, 

and communications in the multi agent 

intrusion detection system. 

4) Study the effects of several factors on 

classification accuracy. 

III. INVESTIGATIVE APPROACH 

Our research effort consists of two design 

iterations to ease the complexity of 

developing ID systems. In each, a network 

simulation environment, simulation 

scenarios, and a multi agent system to 

classify current network activity are 

developed. Network simulations employ 

topology and traffic models reflecting 

associated observations of the Internet. Self 

organization in the multi agent systems is 

promoted via the use of a ”reputation” 

system and evolutionary algorithms for 

automatic discovery of effective system 

parameter settings. The first investigative 

design iteration develops MASNAC (MAS 

Network Attack Classifier): 

• A basic network simulation environment 

implemented within a Discrete Event 

Simulation (DES) framework; 

• Scenarios for this network environment 

involving: 

10-node networks; 

2) Background traffic patterns mimicking 

the distribution of traffic seen on the actual       

Internet; 

3) DoS attacks; 

• A multi agent system for network attack 

classification employing reputation as a 

means of governing agent mobility. 

The second design iteration, MFIRE (Multi 

agent, Flow based Intrusion detection system 

using Reputation and Evolutionary 

computation), represents an architectural 

redesign, but incorporates all features from 

the first iteration and adds many additional 

features, including: 

• A more complex network simulation 

environment enabling inter process 

communication; 

• 100-node networks with topological 

characteristics following those of real-world 

AS networks; 

• Additional malicious scenarios including 

DDoS attacks, scans and worms; 

• A robust communications protocol for the 

multi agent system, designed to handle 

transmission losses and other errors. 

A. The Use of Reputation  

Our reputation system is focused on 

evaluating agents’ ability to share “useful” 

information. It is used both to determine the 

strength of stochastic preference when 

agents are selected to share information as 

well as to trigger migration to another node. 

To elaborate, each agent collects, from its 

host node, a series of local traffic statistics. 

Some agents are selected to share summaries 

of these statistics with other peers. Each 



P a g e  | 64 

 
agent then makes use of both local as well as 

shared information to make an individual 

classification, which is sent to a central 

entity (controller). Each agent is essentially 

“voting” on each cycle with respect to the 

overall classification of the recently 

observed network activity. The reputation of 

each agent is affected by whether shared 

information helped recipients vote in step 

with the majority, compared with how the 

recipient would have voted using only local 

information, resulting in a rating in each 

case. 

B. Internet modeling 

The testing environment for our multi agent 

security research must be both practical and 

relevant. Simulation can address both issues, 

but only if the network is modelled properly. 

The two major issues that arise in attempting 

to properly model the internet environment 

are topology and traffic. Approximating the 

topology of the Internet is discussed in [11]. 

Empirically derived power laws enable the 

generation of models of the Autonomous 

System (AS)-level Internet topology. In [1], 

Barab´asi and Albert show that power law 

graphs can be constructed by starting with a 

random graph and applying incremental 

growth, enforcing new nodes to prefer 

connecting to existing, well-connected 

nodes. With respect to Internet traffic 

modeling, in recent years a considerable 

body of research has concluded that self-

similar distributions that exhibit fractal 

behaviour (similar statistical properties at 

any scale) are superior to the models used 

earlier in pre-Internet telecommunications 

network traffic modelling (e.g. Poisson) [2], 

[4], [11], [17]. We use the Pareto model, 

which is capable of modelling traffic bursts 

visible at any scale. Such scale-invariant 

potential for traffic bursts is a commonly 

observed property of sampled Internet 

traffic. 

C. Pattern Recognition Application  

While legitimate traffic is ‘bursty’, flow-

based Denial of Service (DoS) traffic 

saturates, consuming most or all available 

resources for an extended period of time. 

Our objective is to detect the disruptive, non-

legitimate traffic-generating processes and 

their targets. To accomplish this, we turn to 

techniques developed in the general field of 

pattern recognition [3], [8]. A general 

description of a pattern recognition system 

includes the elements depicted in Fig. 1. In 

[5], [6], each of the pattern recognition 

system elements are discussed in detail: Pre-

processing, Feature generation, and 

Dimensionality reduction, along with the 

three fundamental objectives of pattern 

recognition - Clustering, Classification, and 

Regression. 

D. Multi Agent Systems on Networks 

Patil et al in [15] survey several distributed, 

active systems, asserting some advantages 

over static IDSs. In particular, instead of 

shipping heavyweight raw data collected 

from sensors to central processing stations, 

the mobile agent-based IDS moves the 

relatively lightweight processing code (the 

agent) to the data. Jansen’s overview of 

mobile agent-based IDSs, [10], asserts the 

benefits of efficiency, scalability, and 

robustness in such systems for detection as 

well as response. Security concerns are dealt 

with via agent signing by system security 

officers following validation and signing 

and/or encryption of agent state information 

during execution. 

IV. MASNAC NETWORK 

SIMULATION AND MAS DESIGN 

Deriving from the principles discussed we 

present an initial problem domain 

environment for simulating denial of service 

attacks on AS-level sections of the Internet, 
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and a multi-agent system for identifying sources and targets of these attacks. 

 

 

 

 

 

 

 

A MASNAC Structural Overview  

 

Our MAS system [5] is distributed in the 

sense that each rule-based agent resides on a 

different node in the network, making 

judgments that rely on a combination of 1) 

direct node observations of traffic statistics 

and 2) observations requested from other 

agents. For initial feature selection, our 

detailed design relies on the multi objective 

evolutionary algorithm. For agent 

distribution and provider selection, a 

reputation system [14] provides performance 

feedback, motivating agents to find good 

vantage points in the local neighbourhood 

and helping them assess the value of peer’s 

observations. Our network model is built 

upon MASON, a discrete-event multi agent 

simulation engine (see [13]), which was also 

used for SOMAS (Self-Organized Multi 

Agent Swarms), our previous agent effort 

[9]. Formally, we define in [7] a flow-based 

network with no observable features, and 

observed denial-of-service attacks A 

containing disjoint attack class subsets. We 

find a solution which defines the selected 

features. Using the selected features, the 

class mean of each attack class is calculated, 

and subsequently each attack is classified 

using a Minimum Euclidean Distance 

classifier. As we wish to minimize the 

classification error for all attack classes, the 

solution is evaluated using multi-objective 

criteria. We can examine, for example, the 

MASNAC simulation network depicted in 

Fig. 2 subjected to attack classes defined by 

Table I. The numbers in the Source and 

Target columns of Table I refer to the labels 

of the nodes in Fig. 2. Attack classes are 

constrained such that each class consists of 

one DoS process and one target. In 

particular, all combinations of three DoS 

source nodes and three target nodes are 

considered, as well as a “no attack” scenario, 

for a total of ten attack/activity classes. Note 

that MASNAC network animation provides 

temporal performance insight. 

 

 

 

 

 

 

 

 

 

 

 

FIG.2.A  General Perspective of a Pattern Recognition System 
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MASNAC ATTACK CLASSES 

Class Attack Target 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

0 

9 

5 

0 

9 

           5 

           0  

           9 

           0 

            -    

7 

7 

7 

3 

3 

3 

2 

2 

2 

- 

 

Table 2:how agents rate providers of shared observations | Classification result based 

on observation  sets used 

 

 

 

 

 

 

 

 

 

 

 

 

B. Multi Objective Evolutionary Algorithm (MOEA) 
 

We define features as the mean or standard 

deviation of the amount of traffic received 

over a specified period, received from a 

particular link, and bound for a particular 

destination. The three periods used are two, 

five, and ten time steps wide, allowing the 

system to use a mix of short, medium, and 

long term statistics. Extended discussion of 

the MASNAC MOEA approach can be 

found in [5], [6] where the NSGA-II MOEA 

was employed. We use an initia l base 

reputation value of 0.5, and Table II to 

determine how to modify each agent’s 

reputation. As can be seen from Table II, 

agents, having each selected a single other 

agent to provide shared observations, rate 

their providers based on the effect the shared 

observations had on the classification of the 

observed activity. For detailed  agent 

o p e r a t i o n s  s e e  [ 5 ] . 
 

C. MASNAC Classifier Design  
 

Evaluation:- 
 

The MASNAC MOEA objectives are to 

minimize classification error of each class 

and minimize number of features selected. 

Specific MOEA parameters we used after 

initial testing are: 

• classes: 10 network activity scenarios, 

including nine single-source, single-target 

DoS attacks and one scenario 

with only normal (Pareto distributed) traffic. 

Local Only  Local + 

Shared 

Rating 

Same  as 

majority 

Same  as 

majority 

Different From 

majority 

Different From 

majority 

Same  as 

majority 

Different From 

majority 

Same  as 

majority 

Different From 

majority 

+0 

-0.1 

+0.1 

-0.05 
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• chromosome: feature selection bit-string. 

There are 204 bits. These bits can be 

grouped according to node. For 

each node, there are 6 * [ number of links 

connected to the node] bits. 

 

• population size: 200 

• max number of generations: 200,000 

• crossover: single point, probability 0.9, 

distribution index 20.0 

• mutation: bit flip, probability of flipping 

each bit in each chromosome is 1 / number 

of bits = 1/204, distribution 

index 20.0 

• selection: binary tournament 

Because we are optimizing across attack 

classes as indicated in table I, various 

combinations of the ten attack classes can be 

visualized as Pareto fronts in 2D or 3D 

combinations. One of 

the more interesting is figure 3 which 

indicates non-dominated values (Pareto 

front) across three classification errors – note 

the outliers. Very similar results occur for 

the other error combinations. The feature 

sets (Pareto solutions) selected by our 

MOEA is accomplished in ten dimensions 

by using a table technique. The associated 

best feature sets (chromosomes) on this 

implicit ten dimensional surface are selected. 

The resulting solutions are feature-selection 

bit vectors with about 25 features with about 

2-3 selected features per node per agent for 

classification. 

 

V. MFIRE NETWORK SIMULATION 

AND MAS DESIGN 

A new system design is required for 

autonomous classification of network attacks 

in a more complex network simulation. This 

is a natural outcome of progress in ID 

system design; a more refined network 

model requires and inspires a more 

enlightened approach to the design of its 

defences. Yet, the high-level principles are 

retained; as before, the second design 

iteration leverages the multi agent system 

paradigm with several performance-

enhancing details. The agents are designed 

to be mobile and cooperative in terms of 

sharing feature observations. Over a series of 

simulated attacks, the integrated system 

searches for a ‘good’ distribution of agents 

via a ‘reputation’ system. The parameters of 

this reputation system are improved a priori 

via a multi-objective evolutionary algorithm. 

 

A. Formal MFIRE Problem 

Specification 

Ultimately we seek to 1) maximize the 

classification accuracy of all attack classes; 

and 2) use minimal network bandwidth. This 

requires an effective spatial distribution of a 

limited number of agents, where each agent 

uses a limited number of features to make 

local classification determinations. These 

determinations are then shared with a 

centralized controller. Note that the formal 

definition provides an unambiguous template 

for design implementation. The formal 

MFIRE notation can be found in [5] using 

the support vector machine (SVM) as the 

agent-level classification technique. 
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B. MFIRE Network Simulation and 

MAS  

Design Overview:- 

 

The MFIRE package hierarchy involved in 

the simulation is based upon object-oriented 

software design. The controlled, one-way 

dependencies between the visualization 

layer, the domain layer (labeled ‘MFIRE’), 

and the application layer(‘MASON’) exhibit 

a software engineering principle known as 

Model-View Separation This principle states 

that domain objects should not have direct 

knowledge of view (UI) objects. It allows 

the visualization layer to be changed without 

requiring any changes in the domain or 

application layer [5].The domain layer 

consists of the following groups of classes: 

Network, Scenarios, Processes, Payloads, 

Multi agent system, Classification. The 

MASON discrete event simulation engine 

package is interfaced which provides many 

vital facilities for the execution of the 

simulation as well as the visualization. 

Network Simulation design objectives for 

the physical aspect of the AS-level Internet 

simulation include: 1) Employing a topology 

representative of the AS level of the Internet; 

2)Allowing for multiple scales of AS 

networks in terms of maximum link distance 

and 3) Providing visualization/animation 

facilities to enhance intuitive understanding 

of simulation execution. We select Top Gen 

for having incorporated some of the most 

up-to-date observations about the real 

Internet AS topology. In particular, the 

Controlled Distance model is used to 

generate100-Node networks. Using TopGen, 

MFIRE sets link lengths by calculating the 

Euclidean distance and scaling to a specified 

range. Once the topology is in place, the 

Floyd Warshall routing algorithm initializes 

each Node’s routing table. The result is that 

when there is no contention for bandwidth, 

packets always takes the shortest path to the 

destination. When the preferred link is 

saturated with traffic, an alternative link is 

selected at random. If the alternative link is 

also saturated, the packet is discarded. The 

four main traffic patterns are characterized 

that dominate the simulation. Observe that 

agents also generate traffic patterns of their 

own when communicating, but this is 

normally insignificant in comparison with 

the patterns described: 

 

1) Simulated Normal traffic follows Pareto 

distributions [17]. 

2) Simulated DDoS Traffic Scenarios - 

Flooding-based Distributed Denial of 

Service (DDoS) attacks 

3) Simulated Scan Traffic 

4) Simulated Worm Traffic 

 

 C MFIRE MAS Design:- 

 

Having completed the design of the 

simulation framework, the simulated 

network’s topology generation, components, 

and dominant traffic-generating processes, 

what remains is the multi agent system 

charged with distinguishing begins traffic 

patterns from malicious. The collective 

activity of the population of agents is tied 

together at the multi agent system (MAS) 

level through a controller, which processes 

the classification decisions (‘votes’) of 

individual agents and reports the majority 

result. The controller also stores and 

manages agent reputations. Note that the use 

of a controller makes the multi agent system 

more vulnerable to disruption, but simplifies 

the design considerably. 

 

1) MFIRE Design Operational Objectives: 

Design objectives for our multi agent system 

include: 

 

• Minimize classification error 

• Minimize bandwidth 

• Provide a robust communications protocol  

 

to cope with disruptive traffic patterns The 

first two competing objectives are achieved 

by finding a ‘good’ distribution of a small 

population of agents. The agents are mobile, 

and their location stability is governed by a 

centralized reputation system managed by 

the agent controller. 

 

The third objective is elaborated following 

an overview of the 
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MAS flow of execution. 

 

2). MFIRE Execution Flow Design:  

The explanation of MFIRE’s high-level 

states is made simpler by assuming agents 

have been collecting observations from their 

respective host nodes for nearly a full cycle 

when it comes time to check in with the 

Agent Controller. Furthermore, each agent is 

assumed to have a reputation stored with the 

Agent Controller. The process is: 

• Agents check in with the controller 

• Controller makes observation-sharing 

assignments 

• Agents exchange observations per 

assignments 

• Agents calculate and share results with the 

controller 

• Wrap-up: 

– The Agent Controller tallies the votes. 

– The Agent Controller updates Agent’s 

reputation. 

– The Agent Controller sends each Agent a 

STAY or a MOVE instruction. 

 

3) MFIRE Robust Communications: Each 

agent synchronizes its clock to match that of 

the controller and thereby determine the 

schedule indicating the time of future state 

transitions. 

This allows the Agent to start collecting 

observations at the same time as others in the 

system, check in with the Agent Controller 

at the right time, and so forth. Clock 

synchronization uses the same basic 

algorithm employed by the Network Time 

Protocol (NTP) described in internet RFC 

5905. The Agent sends a SYNC message to 

the Agent Controller. The Agent Controller 

responds with SYNCREPLY, which 

contains the time it received the SYNC 

message as well as the time it sent the 

SYNCREPLY. The Agent determines the 

offset by which it needs to adjust its internal 

clock to match that of the Agent Controller. 

In the MFIRE Agent, a feature selection 

filter method based on Bhattacharyya 

coefficient analysis ranks the features 

according to a measure of how well they 

distinguish each class from the others. The 

top three features from this Bhattacharyya 

distance-based ranking are preferred. 

Additionally, we examine the correlation 

between candidate features. When a pair of 

features exhibits strong correlation, one of 

the two is rejected because it is unlikely to 

contribute useful information beyond what 

the retained feature provides. 

 

In MFIRE, the agent-level classifier is a 

Support Vector Machine (SVM). The SVM 

technique is selected due to its “high 

generalization performance without the need 

to add apriori knowledge,” even in the face 

of many features. The ability of MFIRE to 

find effective agent distributions (in terms of 

location) without external influence is 

evidence the system possesses attributes of 

self organization. As summarized by 

Dempster: “Self-organization refers to 

exactly what is suggested: systems that 

appear to organize themselves without 

external direction, manipulation, or control.” 

 

D. Java Implementation 

We use the jMetal optimization software 

package which provides the necessary 

features for our research: it handles 

continuous as well as combinatorial 

problems, is an open framework, and is 

implemented in Java. The Java 

implementation facilitates integration with 

MASON, MASNAC, and MFIRE. The high-

level and low-level designs of MFIRE and 

its network simulation environment are 

implemented following the respective design 

closely. 

 

VI. DESIGN OF MASNAC 

EXPERIMENTS VIASIMULATION:- 

 

As reported in [6], [7], the experimental 

MASNAC design measures and compares 

the classification accuracy of systems using 

combinations of the following parameters: 

 

• Number of agents: two, three, and four 

• Reputation: not used, used without decay, 

and used with decay; denoted in some of the 

tables respectively as A, B, and C  

 

• Time: four, eight, twelve, and sixteen time 

steps into the simulation, denoted T1, T2, 

T3, and T4 Each experiment consists of one 

combination of the above parameters and 

100 attack rounds. For each round, the attack 
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is selected uniformly randomly. Each 

experiment is run 30times to achieve a 

measure of statistical relevance. Note that 

when reputation is not used, on each round 

each agent uniformly randomly selects a 

peer to provide shared observations. Agents 

in this case do not move from their 

randomly-selected starting nodes. All links 

have capacities of 20 units in both directions, 

which is adequate to handle all but the most 

severe traffic bursts generated from a Pareto 

model with α = 2.0 and b = 0. Nodes have 

capacities equal to 80% of the maximum 

amount of data that can arrive in a single 

time step, which is 20multiplied by the 

degree of the node. Any node receiving more 

than this amount of traffic, on any given 

time step, shuts down, muting all resident 

processes and rendering all connected links 

unusable; thus, attempting to represent 

realistic scenarios. The intent of these initial 

experiments is to provide insight as to 

classification accuracy with given reputation 

parameter values and agent communication 

patterns. 

 

A. Results and Analysis for MASNAC:- 

Several experimental observations can be 

made from the statistics reported in [5]. 

These results are an update of those in [6] 

based upon more extensive testing. But the 

qualitative results remain the same. First, 

regardless of the number of agents used, and 

regardless of the time step at which the 

classification is made, using reputation 

generally outperformed the system that did 

not. Using reputation with decay generally 

outperforms using reputation without decay. 

Decay spurs those agents not receiving 

negative ratings to nevertheless move to 

different nodes if over time they do not 

receive positive ratings, either. It is 

presumed that this slight increase in 

exploration yields the measured benefits, but 

Wilcox on Rank Sum hypothesis testing 

reported in [5], [7] (see Table IV) indicates 

that this cannot be conclusively asserted in 

all cases. Second, in most cases 

classification accuracy degraded with 

increased time. This is because as time 

passes during a denial of service attack, 

more nodes have the possibility of shutting 

down, generating cascading effects as 

packets are routed differently. With a larger 

window of time, the variance in the traffic 

statistics grows, making minimum Euclidean 

distance based classification more difficult. 

Third, the standard deviation trends 

downward from using no reputation, to using 

reputation without decay, to using reputation 

with decay, reflecting potentially more 

consistent results from the latter system. In 

Table III for the four agents case, bold 

indicates the ‘best’ value obtained for the 

column statistic. In the ‘Mean’ column only, 

numbers in italics represent the ‘best’ values 

obtained for a particular classification time 

across the three approaches. In the four agent 

case, three of the four best mean results 

areproduced by reputation without decay. 

Reputation with decay achieves the best 

mean result at T3, and posts the best results 

for standard deviation in all levels of the 

time factor. However, Table IV indicates 

that it is the system using reputation without 

decay that achieves statistically significant 

better performance than the system not using 

reputation for T1 and T2. At T3, using 

reputation with decay does achieve 

significantly better performance than using 

reputation without decay, but neither system 

significantly outperforms the system that 

does not use reputation. The primary effect 

of reputation decay is to induce mobility in 

stagnate agents, but mobility becomes less 

important with a higher agent-to-node ratio. 

A ”safe” distance needs to be defined by the 

operator given the mean statistical numbers. 

Using improved classification techniques in 

MFIRE, statistical testing classification 

accuracies are anticipated to improve. 

 

VII. RESULTS AND ANALYSIS FOR 

MFIRE 

The experimental design for MFIRE focuses 

on the evaluation benchmarks for the first 

three previously stated research objectives: 

1) Develop an effective network simulation 

environment appropriate for the problem 

scope. 

2) Validate the proper functioning of 

simulated malicious traffic. 

3) Validate the proper command, control, 

and communications in the multi agent 

intrusion detection system. 
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Fig. 4. Classification accuracy of MASNAC under different parameter each box plot: no 

reputation; reputation without decay; reputation with decay for Four Agent System 
 

In general, the second iteration design and 

implementation represented by MFIRE must 

achieve and cope with greater complexity 

and realism than the earlier MASNAC-

focused iteration. The fourth research 

objective listed above, 

1) Study the effects of several factors on 

classification accuracy, 

will be addressed in the future, with the 

intent to demonstrate that the use of a 

reputation system increases the accuracy of 

the multi agent network attack classifier 

within our extended network simulation and 

multi agent framework MFIRE. 

A. MFIRE and Simulation Environment 

Assessment 

Assessment of the effectiveness of the 

MFIRE’s network simulation environment 

includes the following tests, resulting from 

the research objectives and benchmark 

specifications. 

 

• Implement a DDoS attack and a ping 

process 

• Implement a UDP-style scan attack 

• Implement a worm process and an insecure 

process. 

1) MFIRE: DDoS Test: This test creates a 

DDoS attack scenario involving multiple 

DoS attackers, a single target, and an ping 

process that pings the target before and after 

the attack starts. The output indicates that the 

ping process sends two sets of pings, with 10 

pings in each set. The ping process sends 

one ping on each time step and receives 

100% response for the first set of pings with 

no variance in delay. The DDoS then 

commences from six sources. Figure 5 

provides visual indication of what happens 

in this scenario. In this visualization, each 

link is divided in half by a black band. For a 

given node with an attached link, the half of 

the link directly connected to it shows 

inbound traffic flow, while the half on the 

other side of the band shows outbound 

traffic flow to the adjacent node. The shade 

of each half link changes according to load: 

white, on one 

end of the spectrum, represents zero load; 

black, on the other end, represents maximum 

load. Observe that most of the links inbound 

to the target are at or near maximum 

capacity. Spill over effects are evident at the 

adjacent node toward the top of the figure. A 

short time after the DDoS begins, the ping 

process starts sending the second set of 

pings. Responses are received for the first 

four. The time delay of these responses is 

significantly longer than what was 

experienced for the previous set of pings, 

with the last taking more than twice as long 

to return(33 time steps vs. 16). The cause of 

this delay is the random rerouting of the 

packets when the preferred link is full. The 
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rest of the pings fail, for a total loss rate of 

60%. This qualitative test demonstrates the 

desired effect: reliable ping response in the 

absence of a DDoS attack, and unreliable 

response in its presence. 

2) MFIRE: Scan Test: This experiment 

demonstrates how a scanning process 

discovers ports with potentially vulnerable 

processes. Scan packets are sent to a range 

of nodes and ports. Insecure processes 

respond with “OK,” while other processes 

make no response at all to the unexpected 

packets. For all other ports, the node sends 

“UNREACHABLE” back to the scanner. In 

this test the scanning process successfully 

reports the evidence of insecure and 

unknown processes distributed among the 

scanned nodes on random ports. 

3) MFIRE: Worm Test: The Worm test 

creates a worm that makes one propagation 

attempt (attack) each time step. The 

environment has four vulnerabilities. Each 

node has a resident Insecure Process with at 

least one and up to four of these 

vulnerabilities. Each vulnerability is 

assigned a per attack success rate (assuming 

a matching exploit) of 20%. The worm is 

armed with exploits for two of the four 

vulnerabilities, selected randomly. Results 

indicate increases over time in the number of 

infected nodes as well as the number of 

distinct infected nodes making at least one 

successful attack. In both cases, exponential 

growth is evident for the majority of the 

simulation, until growth tapers off because 

most of the hosts vulnerable to one 

of the worm’s exploits have already been 

infected. Our animation for the worm 

provides a visualization of the infected 

network [5]. In this scenario, the scale is set 

to ‘regional’, allowing link lengths up to 10 

units. Black bands separate each of the 

segments of the link, but one black band 

divides the link in half. Each half of the link 

is visually representative of the same 

concept as used in the DDoS test case: all 

traffic on each half of the link flows toward 

the node to which it is directly attached, thus 

providing a visual separation of the full 

duplex nature of the link. While no single 

link in our worm visualization appears 

saturated as is the case in the DDoS 

scenario, many links are sustaining high 

loads at this point in the simulation, which is 

at approximately t = 120 or near the point at 

which the growth of the worm slows for lack 

of uninfected and vulnerable targets. Having 

demonstrated the desired qualitative effects, 

this worm attack test is successful. As the 

third of three complex behaviours, the 

successful implementation of the worm 

attack demonstrates the ability of MFIRE’s 

network simulation to support a range of 

flow-based attacks, satisfying two 

objectives. 

 

4) MFIRE Communications and Execution 

Flow Tests: 

The remaining tests involve the 

communications protocol and execution flow 

of MFIRE. Eleven test cases, detailed in [5], 

demonstrate a range of communications 

failure responses. All test cases are 

successful. 

 

VIII. CONCLUSION 

 

Our successful research effort develops, in 

two design iterations, MASNAC and 

MFIRE, unique multi agent systems 

designed to engage in flow-based intrusion 

detection in a distributed way. One of the 

major innovations of this effort involves the 

use of reputation as a means of influencing 

the mobility patterns of the agents. Other 

innovations include a new network 

simulation environment for MASON, an 

associated animated visualization, and the 

integrated use of multi objective 

evolutionary algorithms in the multi agent 

classifier systems. 
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