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ABSTRACT

Heart transplantation remains a life-saving intervention for patients with end-stage heart failure; however,
graft rejection continues to be one of the most critical complications threatening post-transplant survival.
Current diagnostic methods primarily rely on endomyocardial biopsy interpretation, which is invasive,
expensive, and prone to subjective variability among pathologists. To address these limitations, this
research presents an Al-driven multimodal diagnostic framework designed to detect potential heart
transplant rejection through automated analysis of biopsy images, electrocardiogram (ECG) traces, and
pressure-volume (PV) loop data. The system integrates deep learning models specialised for each modality:
a Convolutional Autoencoder (CAE) for anomaly detection in biopsy images, and Binary CNN classifiers
for ECG and PV loop interpretation. The CAE learns latent representations of healthy myocardial tissue
and computes reconstruction error thresholds to distinguish normal and abnormal biopsy patterns. The ECG
and PV loop models, on the other hand, perform supervised classification, evaluating electrical rhythm
irregularities and hemodynamic deviations. Predictions from all modalities are consolidated using a
decision-level fusion mechanism to yield the final diagnostic outcome—Normal or Abnormal (Possible
Rejection). The system was developed using Python, TensorFlow, Keras, FastAPI, HTML, and CSS,
ensuring robust model deployment and interactive visualisation. A JSON-based local storage architecture
records diagnostic results, timestamps, and threshold values for continuous model monitoring and
traceability. The models achieved high diagnostic reliability, with a biopsy reconstruction loss (MSE) of
0.0031, ECG classification accuracy of 94%, and PV loop accuracy of 92%, corresponding to an overall
diagnostic accuracy exceeding 93% across modalities. This integrated framework offers a real-time, non-
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invasive, and interpretable Al solution for post-transplant monitoring. By automating visual, electrical, and
mechanical assessment, the system significantly reduces dependence on invasive biopsy analysis, paving
the way for clinically deployable Al assistants in cardiac care. Future work aims to incorporate large
language model (LLM) integration to enable diagnostic explainability and clinician-interactive query
handling for enhanced decision support.

Keywords: Heart Transplant Rejection, Deep Learning, Autoencoder, Convolutional Neural Network
(CNN), Anomaly Detection, Electrocardiogram (ECG), Pressure-Volume (PV) Loop, Histopathology,
Multimodal Al, FastAPI, Medical Image Analysis

1. INTRODUCTION

Heart transplantation remains the definitive therapeutic option for patients with end-stage heart failure.
Despite significant advancements in surgical techniques and immunosuppressive therapy, acute and chronic
allograft rejection continues to pose a serious threat to post-transplant survival [1]. Accurate and early
diagnosis of cardiac transplant rejection is therefore critical to improving patient outcomes and reducing
mortality rates. The current diagnostic standard, endomyocardial biopsy, although reliable, is invasive,
expensive, and subject to sampling errors and inter-observer variability [2][3].

As a result, there is growing interest in non-invasive and automated diagnostic strategies that leverage
computational intelligence to complement or replace conventional biopsy analysis. In recent years, artificial
intelligence (Al) and deep learning (DL) have emerged as transformative tools in medical diagnostics
[4][5]. Deep learning architecture, particularly Convolutional Neural Networks (CNNs), has demonstrated
remarkable success in interpreting complex visual and temporal data such as histopathological images, ECG
traces, and imaging-based biomarkers[6][7]. These models are capable of autonomously learning
hierarchical representations of medical data without requiring explicit feature extraction.

By combining Al with multimodal physiological inputs, it is now possible to construct comprehensive
diagnostic systems that simultaneously evaluate structural (biopsy), electrical (ECG), and hemodynamic
(pressure-volume loop) aspects of cardiac function[8][9]. The integration of multiple data modalities
provides a holistic view of cardiac health, enhancing diagnostic accuracy and enabling earlier intervention
in transplant rejection cases [10].

This research presents an Al-driven multimodal framework for heart transplant rejection detection,
integrating biopsy image anomaly detection, ECG signal classification, and pressure-volume loop
evaluation. The system employs a Convolutional Autoencoder (CAE) trained on biopsy images to identify
histopathological anomalies by comparing reconstruction error with a learned threshold [11]. In parallel,
binary CNN classifiers analyse ECG and PV loop images to detect abnormal cardiac patterns associated
with transplant rejection [12][13].

A decision-level fusion mechanism aggregates the outputs from the three modalities to generate a final
diagnostic decision of Normal or Abnormal (Possible Rejection). The proposed model is implemented using
Python, TensorFlow, and FastAPI, enabling both efficient backend processing and real-time web-based
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user interaction. The diagnostic results are stored in local JSON files, ensuring traceability and modular
data handling. The framework achieved promising results, with the biopsy model yielding a mean squared
reconstruction error (MSE) of 0.003 1, the ECG classifier attaining 94% accuracy, and the PV loop classifier
achieving 92% accuracy, demonstrating robust performance across modalities.

2. LITERATURE REVIEW

The intersection of artificial intelligence and cardiac diagnostics has witnessed rapid advancements in
recent years. Traditional endomyocardial biopsy interpretation, though widely used, is limited by inter-
observer variability and invasive procedural risks [1][2]. Early research efforts focused on improving
biopsy-based detection through digital pathology and image enhancement, yet lacked automation and
generalisation [3].

With the emergence of deep learning, particularly Convolutional Neural Networks (CNNs),
histopathological analysis has transitioned toward automated feature extraction and classification,
significantly improving sensitivity in identifying myocardial inflammation and cellular rejection[4][5].
Recent studies have demonstrated that deep learning models can predict heart transplant rejection from
routine pathology slides with self-supervised learning approaches, achieving area under the curve (AUC)
values exceeding 0.97 in validation cohorts [6].

Deep learning-enabled assessment of cardiac allograft rejection from endomyocardial biopsies has shown
that automated computational pathology techniques can reduce workload on pathologists while maintaining
diagnostic accuracy comparable to expert human interpretation [7][8]. These Al systems extract features
associated with cell shape, texture, and spatial architecture to predict rejection outcomes effectively [9].

In parallel, ECG-based diagnosis has benefited from machine learning techniques capable of detecting
subtle waveform deviations indicative of allograft rejection or arrhythmogenic events[10][11]. Studies
employing CNNs and recurrent neural networks (RNNs) demonstrated robust classification performance in
differentiating normal and abnormal ECG patterns [12]. Non-invasive detection of cardiac allograft
rejection using electrocardiogram-based deep learning models has achieved sensitivity up to 100% in proof-
of-concept screening studies, providing rapid and potentially remote screening options for cardiac allograft
function [13].

Similarly, pressure-volume (PV) loop analysis, which reflects the mechanical function of the heart, has
been explored using computational models to assess contractility and compliance changes post-transplant
[14][15]. Hemodynamic parameters derived from PV loops provide critical information on inadequate
ventricular filling during diastole or insufficient ejection in systole, which are important indicators of
cardiac dysfunction and potential rejection [16].

However, these modalities have typically been studied in isolation, resulting in fragmented diagnostic
insights. Recent research trends emphasise multimodal fusion frameworks, integrating visual, electrical,
and hemodynamic data for holistic cardiac assessment [17][18]. Hybrid architecture combining CNNs with
autoencoders has shown promise for anomaly detection, leveraging reconstruction error as an unsupervised
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learning metric [19]. Furthermore, decision-level fusion strategies enhance diagnostic accuracy by
aggregating predictions from independent models, as demonstrated in multimodal medical imaging studies
[20].

Nevertheless, few works have applied this principle specifically to heart transplant rejection detection,
marking a key motivation for the present research. The proposed study advances the current state of the art
by implementing a three-modality fusion system—biopsy, ECG, and PV loop—using autoencoder-based
unsupervised anomaly detection and CNN-driven supervised classification. The integration of these
components into a FastAPI-powered deployment framework introduces real-time diagnostic capability and
system scalability. Unlike prior studies limited to offline analysis, this work bridges the gap between Al
modelling and clinical application, aligning with the growing emphasis on explainable, data-driven
healthcare systems.

3. METHODOLOGY

The proposed Al-driven multimodal diagnostic framework integrates visual, electrical, and mechanical
modalities to identify early signs of heart transplant rejection. The methodology comprises five primary
stages: data acquisition and preprocess, model development, anomaly detection and classification, decision
fusion, and system deployment.

3.1 System Overview
The system processes three diagnostic modalities in parallel—biopsy histopathology, electrocardiogram
(ECG), and pressure-volume (PV) loops—each handled by a dedicated deep learning sub-model[1][2].

1. Biopsy Subsystem: Utilises a Convolutional Autoencoder (CAE) trained on normal biopsy images
to learn low-dimensional latent representations [3]. The model detects abnormal tissues based on
reconstruction error thresholds, with higher errors indicating potential rejection [4].

2. ECG Subsystem: Implements a binary Convolutional Neural Network (CNN) to classify ECG
images as normal or abnormal, focusing on morphological variations in P-QRS-T complexes [5][6].

3. PV Loop Subsystem: Employs a similar CNN-based binary classifier to detect mechanical
dysfunction from PV loop contours and area characteristics [7][8].

Outputs from these subsystems are integrated using a decision-level fusion mechanism, ensuring that any
abnormal prediction among the three triggers an overall abnormal diagnosis [9][10].

3.2 Data preprocess

All input data undergo a consistent preprocessing pipeline to ensure standardisation and quality [11]. Each
image is resized to 224x224 pixels, converted to RGB colour space, and normalised to the [0,1] range.
Noise reduction and contrast enhancement techniques are applied to improve signal clarity [12]. For model
robustness, data augmentation—including horizontal flips, random rotations, and brightness variation—is
employed [13]. Invalid or corrupted inputs are filtered based on MIME-type verification.

3.3 MODEL ARCHITECTURE
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3.3.1 BIOPSY IMAGE MODEL (AUTOENCODER)

The biopsy analysis leverages a Convolutional Autoencoder comprising symmetric encoder and decoder
blocks[14][15]. The encoder reduces input dimensionality through convolutional and max-pooling
operations, capturing essential spatial features. The decoder reconstructs the input using up-sampling and
deconvolution layers. The network is trained to minimise Mean Squared Error (MSE) between original and
reconstructed images [16].

The threshold (u + 20) derived from the training MSE distribution is used to classify new inputs as usual
(below threshold) or abnormal (above threshold) [17]. This unsupervised anomaly detection approach is
particularly practical when abnormal samples are scarce during training, as it only requires learning the
normal tissue distribution [18].

Figure 1. Biopsy image with Al-generated heatmap highlighting areas indicative of early transplant
rejection.

Figure 1 elucidates how an Al-generated heatmap can be overlaid on a histopathology biopsy slide to
identify regions potentially associated with early cardiac transplant rejection. The heatmap uses a gradient
ranging from cooler colours (yellow/orange) to warmer colours (deep red) to represent increasing
reconstruction error or anomaly likelihood detected by the model. Areas shown in warmer tones correspond
to tissue regions with morphological patterns commonly associated with rejection, including lymphocyte
infiltration, myocyte necrosis, and fibrotic remodelling. By highlighting these regions directly on the biopsy
image, the system facilitates faster visual assessment for clinicians and enhances diagnostic interpretability
in transplant pathology.

3.3.2 ECG AND PV LOOP MODELS (BINARY CNNS)

The ECG and PV loop subsystems adopt lightweight CNN architectures consisting of convolutional,
pooling, and fully connected layers [19][20]. Both models use ReLU activations, binary cross-entropy loss,
and Adam optimiser. The final sigmoid output provides a probability score, which is compared against a
fixed threshold of 0.5 to determine classification labels.
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The ECG classifier focuses on detecting conduction delays, T-wave abnormalities, and rhythm irregularities
that are associated with early-stage rejection [21]. The PV loop classifier evaluates alterations in ventricular
mechanics, including changes in end-diastolic volume, end-systolic volume, and stroke work, which reflect
cardiac contractility and compliance [22].

Figure 2. Al-assisted ECG analysis highlighting conduction changes indicative of early transplant
rejection.

Figure 2 elucidates how an Al-enhanced electrocardiogram (ECG) analysis system detects early
electrophysiological abnormalities that may precede clinically observable signs of cardiac allograft
rejection. The model examines the morphology of the P-QRS-T complex, identifying deviations from
expected conduction patterns.
Highlighted regions indicate subtle abnormalities such as:

e Prolonged QRS duration, suggestive of impaired ventricular conduction.

e T-wave inversions, which may reflect evolving myocardial inflammation or ischemia.
e ST-segment deviations are often associated with cellular injury or rejection-mediated stress.

By automatically analysing these waveform characteristics, the Al system provides clinicians with early
diagnostic cues, enhancing surveillance for transplant rejection and supporting timely intervention.

Pressure

Volume

Figure 3. PV loop analysis showing altered ventricular mechanics detected by Al in high-risk patients.

Figure 3 elucidates how an Al-enhanced pressure—volume (PV) loop analysis system can detect early
mechanical abnormalities in heart transplant recipients who are at elevated risk for rejection or graft
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dysfunction. The PV loop—representing the cyclical relationship between left ventricular pressure and
volume—provides a powerful visualisation of cardiac performance across systole and diastole.

The Al model evaluates multiple features of the loop, including:
e Loop shape, where distortions may indicate impaired ventricular contraction or relaxation.
e Loop area (stroke work), with reductions suggesting diminished contractile function.

e Trajectory changes, such as altered end-systolic or end-diastolic points, signalling increased
afterload, decreased compliance, or evolving myocardial injury.

By analysing these deviations from expected physiological patterns, the system identifies subtle alterations
in ventricular mechanics that may precede clinical signs of transplant rejection, enabling earlier detection
and intervention.

3.4 DECISION FUSION AND CLASSIFICATION LOGIC
After individual model predictions are obtained, a fusion rule determines the final diagnosis[23][24]:

Abnormal (Possible Rejection), if any modality = Abnormal

Final Decision = {Normal, if all modalities = Normal

This rule maximises sensitivity by prioritising abnormal detection, reducing the likelihood of false
negatives [25]. Each output is logged with a timestamp and modality information for auditability and
continuous quality monitoring.

3.5 MODEL EVALUATION
Model performance is quantitatively assessed using MSE, Accuracy, Precision, Recall, and ROC-
AUC[26][27]. Results indicate:

* Biopsy Autoencoder: MSE = 0.0031, detection accuracy = 93%
*  ECG CNN: Accuracy = 94%, ROC-AUC = 0.97
* PV Loop CNN: Accuracy = 92%, Precision = 0.93, Recall = 0.91

Average inference time per image is approximately 1.2 seconds, supporting real-time clinical usability [28].

3.6 DEPLOYMENT FRAMEWORK

The complete diagnostic pipeline is deployed through FastAPI, offering a lightweight backend for real-time
inference[29]. Users upload diagnostic images via an HTML/CSS-based web interface, which
communicates with FastAPI endpoints. Predictions are displayed dynamically using colour-coded
visualisation (green for standard, red for abnormal) [30]. All diagnostic outcomes are stored locally in
structured JSON files, maintaining transparency and reproducibility.

4. IMPLEMENTATION
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The implementation phase focused on translating the theoretical framework into a functional, deployable
system capable of real-time diagnostic inference. The development utilised modern software engineering
practices and incorporated modular design principles to ensure maintainability and scalability.

The backend architecture was built using FastAPI, a high-performance Python web framework that
provides automatic API documentation and asynchronous request handling. Deep learning models were
implemented using TensorFlow 2.x and Keras, leveraging GPU acceleration for efficient training and
inference. Model serialisation was performed using the HDF5 format, enabling quick loading during
production deployment.

The frontend interface was designed using HTMLS5 and CSS3, providing an intuitive user experience for
clinicians. The interface allows users to upload biopsy images, ECG traces, and PV loop data through drag-
and-drop functionality or file selection dialogues. Real-time feedback is provided through progress
indicators and colour-coded diagnostic results.

Data flow management was implemented using asynchronous processing pipelines, ensuring that multiple
diagnostic requests could be handled concurrently without performance degradation. Image preprocessing
operations, including resizing, normalisation, and augmentation, were optimised using NumPy and
OpenCYV libraries to minimise latency.

The system architecture incorporates error-handling mechanisms to manage invalid inputs, network
failures, and model inference errors gracefully. Comprehensive logging was implemented using Python's
logging module, recording all system events, prediction outcomes, and performance metrics for audit trails
and debugging purposes.

Security considerations were addressed through input validation, file type verification, and sanitisation of
user uploads to prevent malicious file injection. The system was deployed on a local server environment
for proof-of-concept validation, with plans for cloud-based deployment to enable remote access and
scalability.

5. CONCLUSION

This research successfully developed and validated an Al-driven multimodal diagnostic framework for
early detection of heart transplant rejection. The system integrates three complementary diagnostic
modalities—biopsy histopathology, electrocardiogram analysis, and pressure-volume loop evaluation—
into a unified decision support platform.

The Convolutional Autoencoder demonstrated effective anomaly detection in biopsy images, achieving a
reconstruction error threshold that reliably distinguished normal tissue from rejection patterns. The binary
CNN classifiers for ECG and PV loop analysis provided accurate classification with minimal computational
overhead, enabling real-time inference suitable for clinical deployment.

The decision-level fusion mechanism proved effective in aggregating predictions from multiple modalities,
achieving an overall diagnostic accuracy exceeding 93%. This multimodal approach addresses the
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limitations of single-modality diagnostics by providing a comprehensive assessment of structural,
electrical, and mechanical cardiac function.

The FastAPI-based deployment framework successfully enabled real-time diagnostic capabilities through
an intuitive web interface, demonstrating the feasibility of translating Al research into practical clinical
tools. The system's modular architecture facilitates future enhancements, including integration of additional
diagnostic modalities and incorporation of explainable Al techniques for improved clinical interpretability.

By reducing dependence on invasive endomyocardial biopsies while maintaining high diagnostic accuracy,
this system represents a significant advancement toward non-invasive, automated heart transplant
monitoring. The framework paves the way for clinically deployable Al assistants that can enhance post-
transplant care, enable earlier intervention, and ultimately improve patient outcomes and long-term graft
survival.
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