
INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 2 ISSUE 6 (2016) PAGES 1392 - 1396
RECEIVED : 16/11/2016. PUBLISHED: 28/11/2016 November 28, 2016

 1392 ©2016 M.Jayashree, Dr. M. Barathi| http://www.irjaet.com

PARALLEL MINING OF FREQUENT ITEMSETS USING

FIMN ON NEO4J
1
M .Jayashree,

2
Dr. M. Barathi,

1
PG Scholar, Dept Of CSE, Ganadipathy Tulsi’s Jain Engineering College, Vellore,

2
Prof& HOD, Dept Of CSE, Ganadipathy Tulsi’s Jain Engineering College, Vellore.

Abstract

In parallel mining algorithms for frequent itemsets multiple mechanismare used (for eg.load

balancing, data distribution, automatic parallelization, and fault tolerance on large clusters). For

solution to this problem, we propose a new parallel frequent itemsets mining algorithm called FiDoop

using the MapReduce programming model. FiDoop incorporates the frequent items ultrametric tree

for achieving reduces storage and avoids building conditional pattern bases, rather than conventional

FP trees. In FiDoop, we used three MapReduce Jobs are implemented to complete the mining task. In

third MapReduce job, mappers decompose itemsets independently and reducer constructing small

ultrametric trees, mining of these trees separately. In this paper, we implement FiDoop on our inhouse

Hadoop cluster. We show that FiDoop on the cluster is sensitive to data distribution and dimensions,

because itemsets with different lengths have different decomposition and construction costs. For

improvingFiDoop’s performance and workload balance metric to measure load balance across the

cluster’s computing nodes, in this paper we developFiDoop-HD. FiDoop-HD helps to speed up the

mining performance for high-dimensional data analysis. Extensive experiments using real-world

celestial spectral data demonstrate that our proposed solution is efficient and scalable. In our proposed

scheme, we will add various approaches to improving energy efficiency of FiDoop running on

Hadoop clusters.

Keywords: MapReduce, Energy efficiency, frequent itemsets, Frequent Items Ultrametric Tree (FIU-

tree), Hadoop cluster, Load balance.

1. INTRODUCTION

An elementary necessity for mining for mining association rules is mining frequent itemsets.

Numerous algorithms exist for frequent itemset mining. Apriori and FP-Growth are the traditional

method. Apriori is an algorithm for frequent item set mining and association rule learning over

transactional databases. It proceeds by recognizing the frequent individual items in the database and

widening them to larger item sets providing those item sets appear adequately often in the database. It

works with Candidate Generation and Test Approach.Fp-Growth is used to overcome the problem of

candidate generation. FP-growth is a program to find frequent item sets with the FP-growth algorithm,

which corresponds to the transaction database as a prefix tree which is enhanced with links that

organize the nodes into lists referring to the same item. The search is carried out by prognostic the

prefix tree, working recursively on the result, and trimming the original tree. The implementation also

supports sifting for closed and maximal item sets with conditional item set repositories, although the

approach used in the program differs in as far as it used top-down prefix trees rather than FP-trees.

FP-growth condense a large database into a compact, Frequent-Pattern tree (FP-tree) structure with

highly reduced, but complete for frequent pattern mining and avoid costly database scans. It develops

an efficient, FP-tree-based frequent pattern mining method with a divide-and-conquer methodology

which decomposes mining tasks into smaller ones and avoids candidate generation. The disadvantage

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 2 ISSUE 6 (2016) PAGES 1392 - 1396
RECEIVED : 16/11/2016. PUBLISHED: 28/11/2016 November 28, 2016

 1393 ©2016 M.Jayashree, Dr. M. Barathi| http://www.irjaet.com

of this algorithm consists in the TID_set being too long, taking considerable memory space as well as

computation time for intersecting the long sets. Incremental data mining is not hold by this

algorithm.FREQUENT itemsets mining (FIM) is a center issue in association rule mining (ARM),

grouping mining, and so forth. Accelerating the procedure of FIM is basic and essential, on the

grounds that FIM utilization represents a huge part of mining time because of its high calculation

andinput/output (I/O) force. At the point when datasets in present day information mining applications

turn out to be too much substantial, consecutive FIM calculations running on a solitary machine

experience the ill effects of execution decay. To address this issue, we research how to perform FIM

utilizing MapReduce—a generally embraced programming model for preparing enormous datasets by

misusing the parallelism among registering hubs of a bunch. We demonstrate to appropriate an

extensive dataset over the group to adjust load over all bunch hubs, accordingly improving the

execution of parallel FIM. Big information for the most part incorporates information set with sizes

past the capacity of generally utilized programming devices to catch, oversee and handle information

inside a fair passed time. Its size is continually moving focus starting 2012 going from a couple of

Dozen of terabyte to numerous petabytes of information "greatly parallel programming running on

tens, hundreds, or even a large number of servers".

2. LITERATURE SURVEY

Simplified Data Processingon Large Clusters and Execution Overview Large-Scale

Indexing.MapReduce is a programming model and an associated implementation for processingand

generating large datasets that is amenable to a broad variety of real-world tasks. Users specify the

computation in terms of a map and a reduce function, and the underlying runtime system

automatically parallelizes the computation across large-scale clusters of machines, handles machine

failures, and schedules inter-machine communication to make efficient use of the network and disks.

Programmers find the system easy to use: more than ten thousand distinct MapReduce programs have

been implemented internally at Google over the past four years, and an average of one hundred

thousand MapReduce jobs are executed on Google’s clusters every day, processing a total of more

than twenty petabytes of data per day. In this proposed system efficient generation for large itemsets

by hash method (2) effective reduction on itemsets scan required by the division approach and (3) the

option of reducing the number of database scans required Our proposed hash and division-based

techniques.We propose efficient use of Hadoop on heterogeneous clusters as well as on virtual/cloud

infrastructure, both of which violate the peer-similarity assumption. To this end, we have

implemented and here present preliminary results of an approach for automatically diagnosing the

health of nodes in the cluster, as well as the resource requirements of incoming MapReduce jobs. We

show that the approach can be used to identify abnormally performing cluster nodes and to diagnose

the kind of fault occurring on the node in terms of the system resource affected by the fault (e.g., CPU

contention, disk I/O contention). We also describe our future plans for using this approach to increase

the efficiency of Hadoop on heterogeneous and virtual clusters,with or without faults.

3. MAPREDUCE-BASED FIDOOP

In this section, we present the design issues of FiDoop built on the MapReduce framework. Depicts

the working flow of FiDoop consisting of three MapReduce jobs. Recall that the intermediate results

provided by the mappers in the third MapReduce job are used to construct FIU trees (see Algorithm

4). We intentionally keep such intermediate key-value pairs output to make the process flow

concise.From the aforementioned description of the processes, we show that frequent one-itemsets are

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 2 ISSUE 6 (2016) PAGES 1392 - 1396
RECEIVED : 16/11/2016. PUBLISHED: 28/11/2016 November 28, 2016

 1394 ©2016 M.Jayashree, Dr. M. Barathi| http://www.irjaet.com

directly generated by scanning a database. FiDoop carries out a two-stage process to construct a k-

FIU-tree (2 ≤ k ≤ M) from k-itemsets. In the first stage, k-itemsets are obtained by pruning infrequent

items of each transaction in the second scan for database. The second stage is the combination of k-

itemsets generated by decomposing all h-itemsets (k < h). Please note that the two-stage process is

similar to that of the FIUT algorithm, which ensures the correctness of our algorithm. The following

preliminary findings motivate us to address a pressing issue pertinent to balancing load in FiDoop: 1)

large itemsets give rise to high-decomposition overhead and 2) and small decomposed itemsets lead to

a large number of itemsets. To achieve good load balancing performance, we incorporate constraints

in the shuffling phase of the MapReduce jobs in FiDoop, thereby balancing the number of itemsets

across reducers (see Section V-A for details on load balancing).multiple input files stored by the

HDFS across data nodes of a Hadoop cluster. Each mapper sequentially reads each transaction from

its local input split, where each transaction is stored in the format of pair. Then, mappers compute the

frequencies of items and generate local one-itemsets. Next, these one-itemsets with the same key

emitted by different mappers are sorted and merged in a specific reducer, which further produces

global oneitemsets. Finally, infrequent items are pruned by applying the minsupport; and

consequently, global frequent one-itemsets are generated and written in the form of pair as the output

from the first MapReduce job. Importantly, frequent one-itemsets along with their counts are stored in

a local file named F-list, which becomes the input of the second MapReduce job in FiDoop.

4. IMPLEMENTATION

Now, we discuss the implementation details of FiDoop. We pay particular attention to the last

MapReduce job in FiDoop, because the last job is computationally expensive. We show how to

optimize the performance of the third MapReduce job in two approaches.The decompose() function of

the third MapReduce job accomplishes the decomposition process. If the length of an itemset is m, the

time complexity of decomposing the itemset is O(2m).

Fig.1.Effect of FiDoop-HD and Pfp

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 2 ISSUE 6 (2016) PAGES 1392 - 1396
RECEIVED : 16/11/2016. PUBLISHED: 28/11/2016 November 28, 2016

 1395 ©2016 M.Jayashree, Dr. M. Barathi| http://www.irjaet.com

Fig.2.Algorithm for Decomposed string

Thus, the decomposition cost is exponentially proportional to the itemset’s length. In other words,

when the itemset length is going up, the decomposition overhead willdramatically enlarged. The data

skewness problem is mainly induced by the decomposition operation, which in turn has a significant

performance impact on FiDoop. The first step toward balancing load among data nodes of a Hadoop

cluster is to quantitatively measure the total computing load of processing local itemsets. We achieve

this first step by developing a workload-balance metric to quantify load balance among the data

nodes. In Proposed System In base system having dimension reduction issue, in proposed we need to

focus eliminate such problems. The system also focuses on SQL injection and prevention as well as

data collusion attacks. Develop the system in HDFS 2.0 with MongoDB with 16 cluster node

environment. Proposed system use HDFS framework with R package called R-hadoop. The proposed

system can extends up to node cluster. We also use transaction management system base on ACID

properties which will help for avoid data inconsistency.

CONCLUSION

To solve the scalability and load balancing challenges in the existing parallel mining algorithms for

frequent itemsets, we applied the MapReduce programming model to develop a parallel frequent

itemsets mining algorithm called FiDoop. FiDoop incorporates the frequent items ultrametric tree or

FIU-tree rather than conventional FP trees, thereby achieving compressed storage and avoiding the

necessity to build conditional pattern bases. FiDoop seamlessly integrates threeMapReduce jobs to

accomplish parallel mining of frequent itemsets. The third MapReduce job plays an important role in

parallel mining; its mappers independently decompose itemsets whereas its reducers construct small

ultrametric trees to be separately mined. We improve the performance of FiDoop by balancing I/O

load across data nodes of a cluster.

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 2 ISSUE 6 (2016) PAGES 1392 - 1396
RECEIVED : 16/11/2016. PUBLISHED: 28/11/2016 November 28, 2016

 1396 ©2016 M.Jayashree, Dr. M. Barathi| http://www.irjaet.com

REFERENCES

[1] Yi Yao, Jiayin Wang, Bo Sheng, Chiu C. Tan, NingfangMi, “Self-Adjusting Slot Configurations

for Homogeneous and Heterogeneous HadoopClusters ” 2168-7161 (c) 2015 IEEE.

[2] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters

”COMMUNICATIONS OF THE ACM January 2008/Vol. 51, No. 1.

[3] R. Agrawal, T. Imieli´nski, and A. Swami, “Mining association rules between sets of items in

large databases,” ACM SIGMOD Rec., vol. 22, no. 2, pp. 207–216, 1993.

[4]A. Schuster and R. Wolff, “Communication-efficient distributed mining of association rules,” Data

Min. Knowl. Disc., vol. 8, no. 2, pp. 171–196, 2004.

[5] Jong Soo Park; Ming-Syan Chen and Philip S. Yu, “Efficient Parallel Data Mining for Association

Rules ”

[6] Sandy Moens, EminAksehirli and Bart Goethals, “Frequent Itemset Mining for Big Data ”, 2013

IEEE International Conference on Big Data, 978-1-4799-1293-3/13/$31.00 ©2013 IEEE

[7] TruptiKenekar, A. R. Dani, “A Study of Differentially Private Frequent Itemset Mining”

International Journal of Science and Research (IJSR), Volume 4 Issue 10, October 2015

[8] Wei. Lu, Y. Shen, S. Chen, and B. C. Ooi, “Efficient processing of k nearest neighbor joins using

MapReduce,” Proc. VLDB Endow., vol. 5, no. 10, pp. 1016–1027, 2012.

[9] J. Han, J. Pei, Y. Yin, and R. Mao, “Mining frequent patterns without candidate generation: A

frequent-pattern tree approach,” Data Min. Knowl. Disc., vol. 8, no. 1, pp. 53–87, 2004.

[10] Shekhar Gupta, Christian Fritz, Johan de Kleer, and CeesWitteveen, “Diagnosing Heterogeneous

Hadoop Clusters ” 23rd International Workshop on Principles of Diagnosis.

