
INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 4 (2017) PAGES 2544 - 2548
RECEIVED : 05.07.2017 PUBLISHED : 03.08.2017

RECEIVED : 05.03.2017 PUBLISHED : 20.03.2017

 Aug 03, 2017

2544 ©2017 A.Vignesh .al.| http://www.irjaet.com

SCHEDULING DECISIONS IN STREAM PROCESSING

FRAMEWORKS ON HADOOP CLUSTERS

A.Vignesh1, K.Dhakshnamurthy2, D.B.Shanmugam3

1M.Phil, Research Scholar, Dr.M.G.R.Chockalingam Arts College, Arni.

2Assistant Professor, Department of BCA, King Nandhivarman College of Arts & science, Thellar.

3Associate Professor, Department of MCA, Sri Balaji Chockalingam Engineering College , Arni.

ABSTRACT

 Big data processing is a hot topic of today’s computer world. One of the key paradigms behind it

is MapReduce—parallel and massively distributed model inspired by the map and reduce functions

commonly used in functional programming. Due to its simplicity and general availability of standard

implementations, the paradigm has been massively adopted on current computer clusters. Yet,

MapReduce is not optimal for all big data problems. My work focuses on the area of an alternative

paradigm—stream processing—which has multiple advantages over the MapReduce, e.g., it avoids

persistent data storing if not required. The research aims at overcoming deficiencies of existing stream

processing frameworks that prevent its wider adoption.

 Basic scheduling decisions are discussed and demonstrated on naive scheduling of a sample

application. The works presents a proposal of a novel scheduler for stream processing frameworks on

heterogeneous clusters, which employs design-time knowledge as well as benchmarking techniques to

achieve optimal resource-aware deployment of applications over the clusters and eventually better

overall utilization of the cluster.

 In particular, the work deals with scheduling problems of stream processing applications on

heterogeneous clusters. Heterogeneity is a typical characteristic of today’s large data centers (caused

by incremental upgrades and combinations of computing architectures, including specialized

hardware such as GPU or FPGA) and advanced scheduling mechanisms can significantly increase

efficiency of their utilization. The state-of-the-art research and development of stream processing and

advanced methods of related scheduling techniques are discussed in this document. A special

attention is paid to benchmark-based scheduling for distributed stream processing which also forms

the core of my previous work and the proposed research towards my doctoral thesis. Finally, the

concept of novel heterogeneity aware scheduler is presented first in the intuitive way and then

discussed deeper on theoretical basis. The prototype of the scheduler is then described and promising

results of basic experiments are showed.

1. INTRODUCTION

 As the Internet grows bigger, the amount of data that can be gathered, stored, and processed

constantly increases. Traditional approaches to processing of big data, e.g., the data of crawled

documents, web request logs, etc., involves mainly batch processing techniques on very large shared

clusters running in parallel across hundreds of commodity hardware nodes. For the static nature of

such datasets, the batch processing appears to be a suitable technique, both in terms of data

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 4 (2017) PAGES 2544 - 2548
RECEIVED : 05.07.2017 PUBLISHED : 03.08.2017

RECEIVED : 05.03.2017 PUBLISHED : 20.03.2017

 Aug 03, 2017

2545 ©2017 A.Vignesh .al.| http://www.irjaet.com

distribution and task scheduling, and distributed batch processing frameworks, e.g., the frameworks

that implement the MapReduce programming paradigm, have proved to be very popular.

However, the traditional approaches developed for the processing of static datasets cannot

provide low latency responses needed for continuous and real-time stream processing when new data

is constantly arriving even as the old data is being processed. In the data stream model, some or all of

the input data that are to be processed are not available in a static dataset, but rather arrive as one or

more continuous data streams. Traditional distributed processing frameworks like MapReduce are not

well suited to process data streams due to their batch orientation. The response times of those systems

are typically greater than 30 seconds while real-time processing requires response times in the (sub)

seconds range. To address distributed stream processing, several platforms for data or event stream

processing systems have been proposed, e.g., S4 and Storm,. In this work, we build upon one of these

distributed stream processing platforms, namely Storm. In the case of distributed batch processing,

both resources allocation and tasks scheduling can be done prior to the processing of a batch of jobs

based on knowledge of data and tasks for processing and of a distributed environment. Moreover,

during batch processing, required resources are often simply allocated statically from the beginning to

the end of the processing. In the case of distributed stream processing, which is typically continuous,

dynamic nature of input data and unlimited processing time require dynamic allocation of shared

resources and real-time scheduling of tasks based on actual intensity of input data flow, actual quality

of the data, and actual workload of a distributed environment. For example, resource allocation and

task scheduling in Storm involves real-time decision making considering how to replicate bolts and

spread them across nodes of a cluster to achieve required scalability and fault tolerance.

2. RELATED WORK

 Cluster analysis is an exploratory data analysis tool where there are no pre-set classes, although

the number of classes may be set. Because in cluster analysis classes must be constructed without

guidance it is known as an unsupervised learning technique. This is akin to how people or animals

learn about their environment when they are not told or directed what to learn. Clusters are formed

when attributes of observations tend to vary together. Cluster analysis constructs "good" clusters

when the members of a cluster have a high degree of similarity to each other (internal homogeneity)

and are not like members of other clusters (external homogeneity). However, there is no agreement

over how many clusters a dataset should be partitioned into. There are no guidelines on the number of

clusters that would be optimal to aid supervised learning efforts. Statisticians have developed

clustering procedures which group observations by taking into account various metrics to optimize

similarity. The major type of cluster analysis, which will be used in this study, is hierarchical

clustering.

 Hierarchical clustering begins with putting each observation into a separate cluster. Clusters are

then combined successively based upon their resemblance to other clusters. The number of clusters is

reduced until only one cluster remains. A tree or dendrogram can represent hierarchical clustering.

Each fork in the tree represents a step in the clustering process. The tree can be sectioned at any level

to yield a partition of the set of observations. At its early stages the dendrogram is very broad. There

are many clusters that contain very similar observations. As the tree structure narrows the clusters

comprise coarser, more inclusive groupings.

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 4 (2017) PAGES 2544 - 2548
RECEIVED : 05.07.2017 PUBLISHED : 03.08.2017

RECEIVED : 05.03.2017 PUBLISHED : 20.03.2017

 Aug 03, 2017

2546 ©2017 A.Vignesh .al.| http://www.irjaet.com

In my banking study the same thing happened. The bank was surprised to find it had different

types of account holders, some of which were not profitable. They were then able to focus on the

profitable ones, and either disengage or convert the non-profitable ones. In essence, developing

different sets of rules for cluster subgroups. I think this works for almost any types of dataset. …In

data mining contexts, it probably works best with large datasets, because there's always the hope that

you might get a surprise hidden in a lot of data (e.g. the profitability of account types) or discover a

nugget of hidden data (e.g. in the context of health insurance claims, a tiny group of fraudsters

operating a scam) (Wishart, 1999).

A further example Wishart mentions comes from the field of astronomy. In the Hertzsprung-

Russel diagram stars are plotted by temperature and luminosity. "Dwarf" and "giant" stars are in

separate clusters. Within each cluster there is a different relationship between temperature and

luminosity. The correlation is negative for the dwarfs and positive for the giants. If just one

correlation were figured for the dataset of all stars the correlations within the two clusters would wash

each other out. This would erroneously indicate no relationship between temperature and luminosity.

Yet within the clusters for the two types of stars there are clear "rules" governing the relationship

between temperature and luminosity.

3. EVOLUTION MEASURES OF HETROGENEOUS STREAMING

 Memory is managed across domains using an abstraction called buffers, which are used to help

manage properties and track dependences. These three component building blocks offer abstractions

that enhance programmer productivity, provide transparency and control, and enable a separation of

concerns between the scientist programmer and the one tuning for a target architecture. A domain is a

set of computing and storage resources which share coherent memory and have some degree of

locality. Examples of domains include a host CPU, a Knights family co-processor card, a node in a

cluster reached across the fabric, a GPU, and a subset of cores that share a memory controller.

Fig.1. HStreams APIs layered between fabric interfaces & higher abstractions

They are free to execute and complete out of order, as long as the effect of such optimizations is not

visible at the semantic level, i.e., they do not violate the sequential FIFO semantic of the stream.

Tasks naturally expand across a stream’s threads when they use threading constructs like OpenMP or

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 4 (2017) PAGES 2544 - 2548
RECEIVED : 05.07.2017 PUBLISHED : 03.08.2017

RECEIVED : 05.03.2017 PUBLISHED : 20.03.2017

 Aug 03, 2017

2547 ©2017 A.Vignesh .al.| http://www.irjaet.com

TBB. Buffers encapsulate memory. They are used to manage storage properties (e.g. memory type

and affinity) and track dependences among actions. All memory that can be referenced by user code is

represented in a unified source proxy address space, which is partitioned into buffers. The virtual

4. RESULT ANALYSIS

 Decomposition increases concurrency. Tiling can help in that a smaller amount of data needs

to get transferred to a computing resource before the work can begin on it. Some or all of the

communication latency can get covered by computation, through pipelining. Decomposition creates a

larger number of tasks, which may be more evenly divisible by the number of computing resources,

leading to less load imbalance. The best degree of tiling and number of streams depends on the matrix

size and algorithm. Users want to be able to tune these easily, by changing just a few parameters. We

provide a detailed analysis of that technique in for matrix multiply, Cholesky, and LU, but only for

offloading to a single KNC card rather than multiple MICs or MICs plus a host.

Fig.2. Decomposition of the matrix into tiles and distribution

Fig.3.Output Analysis

http://www.irjaet.com/

INTERNATIONAL RESEARCH JOURNAL IN ADVANCED ENGINEERING
AND TECHNOLOGY (IRJAET) E - ISSN: 2454-4752 P - ISSN : 2454-4744
VOL 3 ISSUE 4 (2017) PAGES 2544 - 2548
RECEIVED : 05.07.2017 PUBLISHED : 03.08.2017

RECEIVED : 05.03.2017 PUBLISHED : 20.03.2017

 Aug 03, 2017

2548 ©2017 A.Vignesh .al.| http://www.irjaet.com

CONCLUSION

 This thesis briefs about the stream data mining, its need and the challenges associated in mining

potentially infinite data streams along with various stream mining algorithms for classification and

clustering. The four dimensions of streaming data mining discussed in the thesis covers the study of

this field completely and in modular way. It specifies the need of new algorithms and evaluation

measures relevant to this field and mentioned some of them used in stream mining scenario. The

various available tools or platforms to provide the appropriate framework to deal with large scale data

streams along with their key features have also been described in chronological order that helped in

undertaking the evolvement of the streaming data computing and mining platforms.

REFERENCES

[1] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters,"

Communications of The ACM, vol. 51, no. 1, pp. 107--113, 2008.

[2] R. Lämmel, "Googles MapReduce programming model - Revisited," Science of Computer

Programming, vol. 70, no. 1, pp. 1--30, 2008.

[3] M. Elteir, H. Lin and W.-c. Feng, "Enhancing MapReduce via Asynchronous Data Processing,"

2010.

[4] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy and R. Sears, "MapReduce

Online," 2010.

[5] E. Mazur, B. Li, Y. Diao and P. Shenoy, "Towards Scalable One-Pass Analytics Using

MapReduce," pp. 1102--1111, 2011.

[6] B. Lohrmann, D. Warneke and O. Kao, "Nephele streaming: stream processing under QoS

constraints at scale," Cluster Computing, pp. 1-18, 2013.

http://www.irjaet.com/

